Spaces:
Sleeping
Sleeping
Yuekai Zhang
commited on
Commit
•
f241123
1
Parent(s):
7527245
remove app local
Browse files- .gitattributes +2 -0
- app.py +3 -3
- app_local.py +0 -443
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test_wavs/fleurs/15029788401146217023.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
test_wavs/fleurs/7760285811293653093.wav filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -41,7 +41,7 @@ def convert_to_wav(in_filename: str) -> str:
|
|
41 |
"""Convert the input audio file to a wave file"""
|
42 |
out_filename = in_filename + ".wav"
|
43 |
if '.mp3' in in_filename:
|
44 |
-
_ = os.system(f"ffmpeg -y -i '{in_filename}' -acodec pcm_s16le -ac 1 -ar 16000 '{out_filename}'|| exit 1")
|
45 |
else:
|
46 |
_ = os.system(f"ffmpeg -hide_banner -y -i '{in_filename}' -ar 16000 '{out_filename}' || exit 1")
|
47 |
return out_filename
|
@@ -289,6 +289,7 @@ with demo:
|
|
289 |
language_choices = ["Chinese", "English", "Chinese+English", "Korean", "Japanese", "Arabic", "German", "French", "Russian"]
|
290 |
server_url_textbox = gr.Textbox(
|
291 |
label='Triton Inference Server URL',
|
|
|
292 |
placeholder='e.g. localhost:8001',
|
293 |
max_lines=1,
|
294 |
)
|
@@ -439,5 +440,4 @@ if __name__ == "__main__":
|
|
439 |
|
440 |
logging.basicConfig(format=formatter, level=logging.INFO)
|
441 |
|
442 |
-
|
443 |
-
demo.launch()
|
|
|
41 |
"""Convert the input audio file to a wave file"""
|
42 |
out_filename = in_filename + ".wav"
|
43 |
if '.mp3' in in_filename:
|
44 |
+
_ = os.system(f"ffmpeg -y -i '{in_filename}' -acodec pcm_s16le -ac 1 -ar 16000 '{out_filename}' || exit 1")
|
45 |
else:
|
46 |
_ = os.system(f"ffmpeg -hide_banner -y -i '{in_filename}' -ar 16000 '{out_filename}' || exit 1")
|
47 |
return out_filename
|
|
|
289 |
language_choices = ["Chinese", "English", "Chinese+English", "Korean", "Japanese", "Arabic", "German", "French", "Russian"]
|
290 |
server_url_textbox = gr.Textbox(
|
291 |
label='Triton Inference Server URL',
|
292 |
+
value='10.19.203.82:8001',
|
293 |
placeholder='e.g. localhost:8001',
|
294 |
max_lines=1,
|
295 |
)
|
|
|
440 |
|
441 |
logging.basicConfig(format=formatter, level=logging.INFO)
|
442 |
|
443 |
+
demo.launch(share=True)
|
|
app_local.py
DELETED
@@ -1,443 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
#
|
3 |
-
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
4 |
-
# 2023 Nvidia. (authors: Yuekai Zhang)
|
5 |
-
#
|
6 |
-
# See LICENSE for clarification regarding multiple authors
|
7 |
-
#
|
8 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
-
# you may not use this file except in compliance with the License.
|
10 |
-
# You may obtain a copy of the License at
|
11 |
-
#
|
12 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
-
#
|
14 |
-
# Unless required by applicable law or agreed to in writing, software
|
15 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
-
# See the License for the specific language governing permissions and
|
18 |
-
# limitations under the License.
|
19 |
-
|
20 |
-
# References:
|
21 |
-
# https://gradio.app/docs/#dropdown
|
22 |
-
# https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition
|
23 |
-
|
24 |
-
import logging
|
25 |
-
import os
|
26 |
-
import tempfile
|
27 |
-
import time
|
28 |
-
from datetime import datetime
|
29 |
-
|
30 |
-
import gradio as gr
|
31 |
-
import numpy as np
|
32 |
-
import urllib.request
|
33 |
-
import tritonclient
|
34 |
-
import tritonclient.grpc as grpcclient
|
35 |
-
from tritonclient.utils import np_to_triton_dtype
|
36 |
-
import soundfile
|
37 |
-
|
38 |
-
from examples import examples
|
39 |
-
|
40 |
-
def convert_to_wav(in_filename: str) -> str:
|
41 |
-
"""Convert the input audio file to a wave file"""
|
42 |
-
out_filename = in_filename + ".wav"
|
43 |
-
if '.mp3' in in_filename:
|
44 |
-
_ = os.system(f"ffmpeg -y -i '{in_filename}' -acodec pcm_s16le -ac 1 -ar 16000 '{out_filename}' || exit 1")
|
45 |
-
else:
|
46 |
-
_ = os.system(f"ffmpeg -hide_banner -y -i '{in_filename}' -ar 16000 '{out_filename}' || exit 1")
|
47 |
-
return out_filename
|
48 |
-
|
49 |
-
|
50 |
-
def build_html_output(s: str, style: str = "result_item_success"):
|
51 |
-
return f"""
|
52 |
-
<div class='result'>
|
53 |
-
<div class='result_item {style}'>
|
54 |
-
{s}
|
55 |
-
</div>
|
56 |
-
</div>
|
57 |
-
"""
|
58 |
-
|
59 |
-
def process_url(
|
60 |
-
language: str,
|
61 |
-
repo_id: str,
|
62 |
-
decoding_method: str,
|
63 |
-
whisper_prompt_textbox: str,
|
64 |
-
url: str,
|
65 |
-
server_url_textbox: str,
|
66 |
-
):
|
67 |
-
logging.info(f"Processing URL: {url}")
|
68 |
-
with tempfile.NamedTemporaryFile() as f:
|
69 |
-
try:
|
70 |
-
urllib.request.urlretrieve(url, f.name)
|
71 |
-
|
72 |
-
return process(
|
73 |
-
in_filename=f.name,
|
74 |
-
language=language,
|
75 |
-
repo_id=repo_id,
|
76 |
-
decoding_method=decoding_method,
|
77 |
-
whisper_prompt_textbox=whisper_prompt_textbox,
|
78 |
-
server_url=server_url_textbox,
|
79 |
-
)
|
80 |
-
except Exception as e:
|
81 |
-
logging.info(str(e))
|
82 |
-
return "", build_html_output(str(e), "result_item_error")
|
83 |
-
|
84 |
-
def process_uploaded_file(
|
85 |
-
language: str,
|
86 |
-
repo_id: str,
|
87 |
-
decoding_method: str,
|
88 |
-
whisper_prompt_textbox: int,
|
89 |
-
in_filename: str,
|
90 |
-
server_url_textbox: str,
|
91 |
-
):
|
92 |
-
if in_filename is None or in_filename == "":
|
93 |
-
return "", build_html_output(
|
94 |
-
"Please first upload a file and then click "
|
95 |
-
'the button "submit for recognition"',
|
96 |
-
"result_item_error",
|
97 |
-
)
|
98 |
-
|
99 |
-
logging.info(f"Processing uploaded file: {in_filename}")
|
100 |
-
try:
|
101 |
-
return process(
|
102 |
-
in_filename=in_filename,
|
103 |
-
language=language,
|
104 |
-
repo_id=repo_id,
|
105 |
-
decoding_method=decoding_method,
|
106 |
-
whisper_prompt_textbox=whisper_prompt_textbox,
|
107 |
-
server_url=server_url_textbox,
|
108 |
-
)
|
109 |
-
except Exception as e:
|
110 |
-
logging.info(str(e))
|
111 |
-
return "", build_html_output(str(e), "result_item_error")
|
112 |
-
|
113 |
-
|
114 |
-
def process_microphone(
|
115 |
-
language: str,
|
116 |
-
repo_id: str,
|
117 |
-
decoding_method: str,
|
118 |
-
whisper_prompt_textbox: str,
|
119 |
-
in_filename: str,
|
120 |
-
server_url_textbox: str,
|
121 |
-
):
|
122 |
-
if in_filename is None or in_filename == "":
|
123 |
-
return "", build_html_output(
|
124 |
-
"Please first click 'Record from microphone', speak, "
|
125 |
-
"click 'Stop recording', and then "
|
126 |
-
"click the button 'submit for recognition'",
|
127 |
-
"result_item_error",
|
128 |
-
)
|
129 |
-
|
130 |
-
logging.info(f"Processing microphone: {in_filename}")
|
131 |
-
try:
|
132 |
-
return process(
|
133 |
-
in_filename=in_filename,
|
134 |
-
language=language,
|
135 |
-
repo_id=repo_id,
|
136 |
-
decoding_method=decoding_method,
|
137 |
-
whisper_prompt_textbox=whisper_prompt_textbox,
|
138 |
-
server_url=server_url_textbox,
|
139 |
-
)
|
140 |
-
except Exception as e:
|
141 |
-
logging.info(str(e))
|
142 |
-
return "", build_html_output(str(e), "result_item_error")
|
143 |
-
|
144 |
-
def send_whisper(whisper_prompt, wav_path, model_name, triton_client, protocol_client, padding_duration=10):
|
145 |
-
waveform, sample_rate = soundfile.read(wav_path)
|
146 |
-
assert sample_rate == 16000, f"Only support 16k sample rate, but got {sample_rate}"
|
147 |
-
duration = int(len(waveform) / sample_rate)
|
148 |
-
|
149 |
-
# padding to nearset 10 seconds
|
150 |
-
samples = np.zeros(
|
151 |
-
(
|
152 |
-
1,
|
153 |
-
padding_duration * sample_rate * ((duration // padding_duration) + 1),
|
154 |
-
),
|
155 |
-
dtype=np.float32,
|
156 |
-
)
|
157 |
-
|
158 |
-
samples[0, : len(waveform)] = waveform
|
159 |
-
|
160 |
-
lengths = np.array([[len(waveform)]], dtype=np.int32)
|
161 |
-
|
162 |
-
inputs = [
|
163 |
-
protocol_client.InferInput(
|
164 |
-
"WAV", samples.shape, np_to_triton_dtype(samples.dtype)
|
165 |
-
),
|
166 |
-
protocol_client.InferInput(
|
167 |
-
"TEXT_PREFIX", [1, 1], "BYTES"
|
168 |
-
),
|
169 |
-
]
|
170 |
-
inputs[0].set_data_from_numpy(samples)
|
171 |
-
|
172 |
-
input_data_numpy = np.array([whisper_prompt], dtype=object)
|
173 |
-
input_data_numpy = input_data_numpy.reshape((1, 1))
|
174 |
-
inputs[1].set_data_from_numpy(input_data_numpy)
|
175 |
-
|
176 |
-
outputs = [protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
177 |
-
# generate a random sequence id
|
178 |
-
sequence_id = np.random.randint(0, 1000000)
|
179 |
-
|
180 |
-
response = triton_client.infer(
|
181 |
-
model_name, inputs, request_id=str(sequence_id), outputs=outputs
|
182 |
-
)
|
183 |
-
|
184 |
-
decoding_results = response.as_numpy("TRANSCRIPTS")[0]
|
185 |
-
if type(decoding_results) == np.ndarray:
|
186 |
-
decoding_results = b" ".join(decoding_results).decode("utf-8")
|
187 |
-
else:
|
188 |
-
# For wenet
|
189 |
-
decoding_results = decoding_results.decode("utf-8")
|
190 |
-
return decoding_results, duration
|
191 |
-
|
192 |
-
def process(
|
193 |
-
language: str,
|
194 |
-
repo_id: str,
|
195 |
-
decoding_method: str,
|
196 |
-
whisper_prompt_textbox: str,
|
197 |
-
in_filename: str,
|
198 |
-
server_url: str,
|
199 |
-
):
|
200 |
-
logging.info(f"language: {language}")
|
201 |
-
logging.info(f"repo_id: {repo_id}")
|
202 |
-
logging.info(f"decoding_method: {decoding_method}")
|
203 |
-
logging.info(f"whisper_prompt_textbox: {whisper_prompt_textbox}")
|
204 |
-
logging.info(f"in_filename: {in_filename}")
|
205 |
-
|
206 |
-
model_name = "whisper"
|
207 |
-
triton_client = grpcclient.InferenceServerClient(url=server_url, verbose=False)
|
208 |
-
protocol_client = grpcclient
|
209 |
-
|
210 |
-
filename = convert_to_wav(in_filename)
|
211 |
-
|
212 |
-
now = datetime.now()
|
213 |
-
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
214 |
-
logging.info(f"Started at {date_time}")
|
215 |
-
|
216 |
-
start = time.time()
|
217 |
-
|
218 |
-
text, duration = send_whisper(whisper_prompt_textbox, filename, model_name, triton_client, protocol_client)
|
219 |
-
|
220 |
-
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
221 |
-
end = time.time()
|
222 |
-
|
223 |
-
#metadata = torchaudio.info(filename)
|
224 |
-
#duration = metadata.num_frames / sample_rate
|
225 |
-
rtf = (end - start) / duration
|
226 |
-
|
227 |
-
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
|
228 |
-
|
229 |
-
info = f"""
|
230 |
-
Wave duration : {duration: .3f} s <br/>
|
231 |
-
Processing time: {end - start: .3f} s <br/>
|
232 |
-
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
|
233 |
-
"""
|
234 |
-
if rtf > 1:
|
235 |
-
info += (
|
236 |
-
"<br/>We are loading the model for the first run. "
|
237 |
-
"Please run again to measure the real RTF.<br/>"
|
238 |
-
)
|
239 |
-
|
240 |
-
logging.info(info)
|
241 |
-
logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}")
|
242 |
-
|
243 |
-
return text, build_html_output(info)
|
244 |
-
|
245 |
-
|
246 |
-
title = "# Speech Recognition and Translation with Whisper"
|
247 |
-
description = """
|
248 |
-
This space shows how to do speech recognition and translation with Nvidia **Triton**.
|
249 |
-
|
250 |
-
Please visit
|
251 |
-
<https://huggingface.co/yuekai/model_repo_whisper_large_v2>
|
252 |
-
for triton speech recognition.
|
253 |
-
|
254 |
-
The service is running on a GPU based on triton server.
|
255 |
-
|
256 |
-
See more information by visiting the following links:
|
257 |
-
|
258 |
-
- <https://github.com/triton-inference-server>
|
259 |
-
- <https://github.com/yuekaizhang/Triton-ASR-Client/tree/main>
|
260 |
-
- <https://github.com/k2-fsa/sherpa/tree/master/triton>
|
261 |
-
- <https://github.com/wenet-e2e/wenet/tree/main/runtime/gpu>
|
262 |
-
- <https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime/triton_gpu>
|
263 |
-
|
264 |
-
"""
|
265 |
-
|
266 |
-
# css style is copied from
|
267 |
-
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
|
268 |
-
css = """
|
269 |
-
.result {display:flex;flex-direction:column}
|
270 |
-
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
|
271 |
-
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
272 |
-
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
273 |
-
"""
|
274 |
-
|
275 |
-
|
276 |
-
# def update_model_dropdown(language: str):
|
277 |
-
# if language in language_to_models:
|
278 |
-
# choices = language_to_models[language]
|
279 |
-
# return gr.Dropdown.update(choices=choices, value=choices[0])
|
280 |
-
|
281 |
-
# raise ValueError(f"Unsupported language: {language}")
|
282 |
-
|
283 |
-
|
284 |
-
demo = gr.Blocks(css=css)
|
285 |
-
|
286 |
-
|
287 |
-
with demo:
|
288 |
-
gr.Markdown(title)
|
289 |
-
language_choices = ["Chinese", "English", "Chinese+English", "Korean", "Japanese", "Arabic", "German", "French", "Russian"]
|
290 |
-
server_url_textbox = gr.Textbox(
|
291 |
-
label='Triton Inference Server URL',
|
292 |
-
value='10.19.203.82:8001',
|
293 |
-
placeholder='e.g. localhost:8001',
|
294 |
-
max_lines=1,
|
295 |
-
)
|
296 |
-
|
297 |
-
whisper_prompt_textbox = gr.Textbox(
|
298 |
-
label='Whisper prompt',
|
299 |
-
placeholder='Whisper prompt e.g. <|startoftranscript|><zh><en><transcribe>',
|
300 |
-
max_lines=1,
|
301 |
-
)
|
302 |
-
language_radio = gr.Radio(
|
303 |
-
label="Language",
|
304 |
-
choices=language_choices,
|
305 |
-
value=language_choices[0],
|
306 |
-
)
|
307 |
-
model_dropdown = gr.Dropdown(
|
308 |
-
choices=["whisper-large-v2"],
|
309 |
-
label="Select a model",
|
310 |
-
value="whisper-large-v2",
|
311 |
-
)
|
312 |
-
|
313 |
-
# language_radio.change(
|
314 |
-
# update_model_dropdown,
|
315 |
-
# inputs=language_radio,
|
316 |
-
# outputs=model_dropdown,
|
317 |
-
# )
|
318 |
-
|
319 |
-
decoding_method_radio = gr.Radio(
|
320 |
-
label="Decoding method",
|
321 |
-
choices=["greedy_search"],
|
322 |
-
value="greedy_search",
|
323 |
-
)
|
324 |
-
|
325 |
-
# whisper_prompt_textbox_slider = gr.Slider(
|
326 |
-
# minimum=1,
|
327 |
-
# value=4,
|
328 |
-
# step=1,
|
329 |
-
# label="Number of active paths for modified_beam_search",
|
330 |
-
# )
|
331 |
-
|
332 |
-
with gr.Tabs():
|
333 |
-
with gr.TabItem("Upload from disk"):
|
334 |
-
uploaded_file = gr.Audio(
|
335 |
-
source="upload", # Choose between "microphone", "upload"
|
336 |
-
type="filepath",
|
337 |
-
optional=False,
|
338 |
-
label="Upload from disk",
|
339 |
-
)
|
340 |
-
upload_button = gr.Button("Submit for recognition")
|
341 |
-
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
|
342 |
-
uploaded_html_info = gr.HTML(label="Info")
|
343 |
-
|
344 |
-
gr.Examples(
|
345 |
-
examples=examples,
|
346 |
-
inputs=[
|
347 |
-
language_radio,
|
348 |
-
model_dropdown,
|
349 |
-
decoding_method_radio,
|
350 |
-
whisper_prompt_textbox,
|
351 |
-
uploaded_file,
|
352 |
-
],
|
353 |
-
outputs=[uploaded_output, uploaded_html_info],
|
354 |
-
fn=process_uploaded_file,
|
355 |
-
cache_examples=False,
|
356 |
-
)
|
357 |
-
|
358 |
-
with gr.TabItem("Record from microphone"):
|
359 |
-
microphone = gr.Audio(
|
360 |
-
source="microphone", # Choose between "microphone", "upload"
|
361 |
-
type="filepath",
|
362 |
-
optional=False,
|
363 |
-
label="Record from microphone",
|
364 |
-
)
|
365 |
-
|
366 |
-
record_button = gr.Button("Submit for recognition")
|
367 |
-
recorded_output = gr.Textbox(label="Recognized speech from recordings")
|
368 |
-
recorded_html_info = gr.HTML(label="Info")
|
369 |
-
|
370 |
-
gr.Examples(
|
371 |
-
examples=examples,
|
372 |
-
inputs=[
|
373 |
-
language_radio,
|
374 |
-
model_dropdown,
|
375 |
-
decoding_method_radio,
|
376 |
-
whisper_prompt_textbox,
|
377 |
-
microphone,
|
378 |
-
],
|
379 |
-
outputs=[recorded_output, recorded_html_info],
|
380 |
-
fn=process_microphone,
|
381 |
-
cache_examples=False,
|
382 |
-
)
|
383 |
-
|
384 |
-
with gr.TabItem("From URL"):
|
385 |
-
url_textbox = gr.Textbox(
|
386 |
-
max_lines=1,
|
387 |
-
placeholder="URL to an audio file",
|
388 |
-
label="URL",
|
389 |
-
interactive=True,
|
390 |
-
)
|
391 |
-
|
392 |
-
url_button = gr.Button("Submit for recognition")
|
393 |
-
url_output = gr.Textbox(label="Recognized speech from URL")
|
394 |
-
url_html_info = gr.HTML(label="Info")
|
395 |
-
|
396 |
-
upload_button.click(
|
397 |
-
process_uploaded_file,
|
398 |
-
inputs=[
|
399 |
-
language_radio,
|
400 |
-
model_dropdown,
|
401 |
-
decoding_method_radio,
|
402 |
-
whisper_prompt_textbox,
|
403 |
-
uploaded_file,
|
404 |
-
server_url_textbox,
|
405 |
-
],
|
406 |
-
outputs=[uploaded_output, uploaded_html_info],
|
407 |
-
)
|
408 |
-
|
409 |
-
record_button.click(
|
410 |
-
process_microphone,
|
411 |
-
inputs=[
|
412 |
-
language_radio,
|
413 |
-
model_dropdown,
|
414 |
-
decoding_method_radio,
|
415 |
-
whisper_prompt_textbox,
|
416 |
-
microphone,
|
417 |
-
server_url_textbox,
|
418 |
-
],
|
419 |
-
outputs=[recorded_output, recorded_html_info],
|
420 |
-
)
|
421 |
-
|
422 |
-
url_button.click(
|
423 |
-
process_url,
|
424 |
-
inputs=[
|
425 |
-
language_radio,
|
426 |
-
model_dropdown,
|
427 |
-
decoding_method_radio,
|
428 |
-
whisper_prompt_textbox,
|
429 |
-
url_textbox,
|
430 |
-
server_url_textbox,
|
431 |
-
],
|
432 |
-
outputs=[url_output, url_html_info],
|
433 |
-
)
|
434 |
-
|
435 |
-
gr.Markdown(description)
|
436 |
-
|
437 |
-
|
438 |
-
if __name__ == "__main__":
|
439 |
-
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
440 |
-
|
441 |
-
logging.basicConfig(format=formatter, level=logging.INFO)
|
442 |
-
|
443 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|