File size: 5,937 Bytes
5edc0a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
import t5
from torch.nn.utils.rnn import pad_sequence

from PIL import Image

from datasets import load_dataset

from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from typing import List, Optional, Tuple, Union
from diffusers.utils.torch_utils import randn_tensor


# Collator adjusted for local dataset
class Collator:
    def __init__(self, image_size, text_label, image_label, name, channels):
        self.text_label = text_label
        self.image_label = image_label
        self.name = name
        self.channels = channels
        self.transform = T.Compose([
            T.Resize((image_size, image_size)),
            T.ToTensor(),
        ])
        
    def __call__(self, batch):
        texts = []
        masks = []
        images = []
        for item in batch:
            try:
                # Load image from local file
                image_path = 'data/'+item[self.image_label]  # Assuming this is a path to the image file
                with Image.open(image_path) as img:
                    image = self.transform(img.convert(self.channels))
            except Exception as e:
                print(f"Failed to process image {image_path}: {e}")
                continue

            # Encode the text
            text, mask = t5.t5_encode_text(
                [item[self.text_label]], 
                name=self.name, 
                return_attn_mask=True
                )
            texts.append(torch.squeeze(text))
            masks.append(torch.squeeze(mask))
            images.append(image)

        if len(texts) == 0:
            return None
        
        # Are these strictly necessary?
        texts = pad_sequence(texts, True)
        masks = pad_sequence(masks, True)

        newbatch = []
        for i in range(len(texts)):
            newbatch.append((images[i], texts[i], masks[i]))

        return torch.utils.data.dataloader.default_collate(newbatch)


class GlyffuserPipeline(DiffusionPipeline):
    r'''
    Pipeline for text-to-image generation from the glyffuser model

    Parameters:
        unet (['UNet2DConditionModel'])
        scheduler (['SchedulerMixin'])
        text_encoder (['TextEncoder']) - T5 small
    '''
    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(
            unet=unet, 
            scheduler=scheduler,
            )

    @torch.no_grad()
    def __call__(
        self,
        texts: List[str],
        text_encoder: str = "google-t5/t5-small",
        batch_size: int = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        num_inference_steps: int = 1000,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ) -> Union[ImagePipelineOutput, Tuple]:
        '''
        Docstring
        '''        
        # Get text embeddings
        # Encode the text
        # text_embeddings = []
        # for text in texts:
        #     embedding = t5.t5_encode_text(text, name=text_encoder)
        #     text_embeddings.append(torch.squeeze(embedding))
        # text_embeddings = pad_sequence(text_embeddings, True)

        batch_size = len(texts)

        text_embeddings, masks = t5.t5_encode_text(texts, name=text_encoder, return_attn_mask=True)

        # Sample gaussian noise to begin loop
        if isinstance(self.unet.config.sample_size, int):
            image_shape = (
                batch_size,
                self.unet.config.in_channels,
                self.unet.config.sample_size,
                self.unet.config.sample_size,
            )
        else:
            image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)

        
        # if self.device.type == "mps": # MPS is apple silicon
        #     # randn does not work reproducibly on mps
        #     image = randn_tensor(image_shape, generator=generator)
        #     image = image.to(self.device)
        # else:
        image = randn_tensor(image_shape, generator=generator, device=self.device)

        # set step values
        self.scheduler.set_timesteps(num_inference_steps)

        for t in self.progress_bar(self.scheduler.timesteps):
            # 1. predict noise model_output
            model_output = self.unet(
                image, 
                t,
                encoder_hidden_states=text_embeddings, # Add text encoding input
                encoder_attention_mask=masks, # Add attention mask
                return_dict=False
                )[0] # <-- sample is an attribute of the BaseOutClass of type torch.FloatTensor

            # 2. compute previous image: x_t -> x_t-1
            image = self.scheduler.step(model_output, t, image, generator=generator, return_dict=False)[0]

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)
    
def make_grid(images, rows, cols):
    w, h = images[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    for i, image in enumerate(images):
        grid.paste(image, box=(i%cols*w, i//cols*h))
    return grid

def evaluate(config, epoch, texts, pipeline):
    images = pipeline(
        texts,
        batch_size = config.eval_batch_size, 
        generator=torch.Generator(device='cpu').manual_seed(config.seed), # Generator must be on CPU for sampling during training
    ).images

    # Make a grid out of the images
    image_grid = make_grid(images, rows=4, cols=4)

    # Save the images
    test_dir = os.path.join(config.output_dir, "samples")
    os.makedirs(test_dir, exist_ok=True)
    image_grid.save(f"{test_dir}/{epoch:04d}.png")