EAGLE / model /cnets.py
yuhuili's picture
Upload 10 files
687d97d
raw
history blame
42.2 kB
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LLaMA model."""
import copy
import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "5"
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
try:
from .configs import EConfig
from .utils_c import *
from .choices import *
except:
from configs import EConfig
from utils_c import *
from choices import *
from utils import prepare_logits_processor
top_k=10
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class LlamaRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
class LlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
if self.config.pretraining_tp > 1:
slice = self.intermediate_size // self.config.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
gate_proj = torch.cat(
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
)
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
down_proj = [
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
]
down_proj = sum(down_proj)
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class LlamaDecoderLayer(nn.Module):
def __init__(self, config,index):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LlamaAttention(config=config)
self.mlp = LlamaMLP(config)
self.index=index
if self.index!=0:
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
if self.index != 0:
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class I(nn.Module):
def __init__(self):
super().__init__()
self.dummy = nn.Parameter(torch.ones(1, dtype=torch.float32))
def forward(self,x):
return x + self.dummy - self.dummy #(also tried x+self.dummy)
def len_list(x,n):
return [i for i in x if len(i)<=n]
class Model(nn.Module):
def __init__(self,config,load_emb=False):
super().__init__()
self.gradient_checkpointing = True
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if load_emb:
from safetensors import safe_open
with safe_open("weights/llama2chat/13B/model-00001-of-00003.safetensors",
framework="pt",
device="cpu") as f:
tensor_slice = f.get_slice("model.embed_tokens.weight")
vocab_size, hidden_dim = tensor_slice.get_shape()
tensor = tensor_slice[:, :hidden_dim].float()
self.embed_tokens.weight.data = tensor
#self.init_tree()
self.layers = nn.ModuleList([LlamaDecoderLayer(config,index) for index in range(config.num_hidden_layers)])
self.fc=nn.Linear(2*config.hidden_size,config.hidden_size)
self.act=ACT2FN[config.hidden_act]
for param in self.embed_tokens.parameters():
param.requires_grad = False
def init_tree(self):
self.tree = mc_sim_7b_63
self.tree_buffer=generate_tree_buffers(self.tree,self.embed_tokens.weight.device)
def reset(self):
self.tree_mask=None
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
#inputs_embeds.dtype,
torch.float32, # [MODIFIED] force to cast to float32
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, torch.float32, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
# [MODIFIED] add tree mask
if hasattr(self, "tree_mask") and self.tree_mask is not None:
tree_mask = self.tree_mask
tree_len = tree_mask.size(-1)
combined_attention_mask[:, :, -tree_len:, -tree_len:][
tree_mask == 0
] = torch.finfo(torch.float32).min
return combined_attention_mask
def forward(
self,
hidden_states,
input_ids,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
std=None
):
batch_size, seq_length, _ = hidden_states.shape
seq_length_with_past = seq_length
past_key_values_length = 0
with torch.no_grad():
inputs_embeds = self.embed_tokens(input_ids)
#inputs_embeds = inputs_embeds.detach()
# if std is not None:
# noise = torch.randn(inputs_embeds.size(),device=inputs_embeds.device) * std
# inputs_embeds=inputs_embeds+noise
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = hidden_states.device if hidden_states is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=hidden_states.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
)
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
#hidden_states=self.act(self.fc(torch.cat((inputs_embeds,hidden_states),dim=-1)))
inputs_embeds=inputs_embeds.to(hidden_states.dtype)
hidden_states = self.fc(torch.cat((inputs_embeds, hidden_states), dim=-1))
all_hidden_states = () if output_hidden_states else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if use_cache:
return hidden_states,next_decoder_cache
return hidden_states
@torch.no_grad()
def generate(self,hidden_states,input_ids,head,max_length=4,use_cache=False):
return_input_ids=copy.deepcopy(input_ids[0].tolist())
input_ids=input_ids[:,1:]
#input_ids=input_ids.to(hidden_states.device)
if use_cache:
past_key_values=None
for i in range(max_length):
if past_key_values!=None:
out_hidden,past_key_values = self(out_hidden[:, -1:], input_ids=torch.tensor([[token]]).to(input_ids.device),past_key_values=past_key_values,use_cache=True)
else:
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids,use_cache=True)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
token = torch.argmax(last_headout)
#input_ids = torch.cat((input_ids, torch.tensor([[token]]).to(input_ids.device)), dim=1)
return_input_ids.append(token.item())
if token == 2:
break
#hidden_states = torch.cat((hidden_states, out_hidden[:, -1:]), dim=1)
else:
for i in range(max_length):
out_hidden=self(hidden_states,input_ids=input_ids)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
token = torch.argmax(last_headout)
return_input_ids.append(token.item())
input_ids = torch.cat((input_ids, torch.tensor([[token]]).to(input_ids.device)), dim=1)
if token==2:
break
hidden_states = torch.cat((hidden_states, out_hidden[:, -1:]), dim=1)
return return_input_ids
@torch.no_grad()
def repeat_kv(self,kv,numr):
newkv=[]
for i in kv:
newkv.append((i[0].repeat(numr,1,1,1),i[1].repeat(numr,1,1,1)))
return tuple(newkv)
@torch.no_grad()
def reduce_kv(self,kv,numr):
newkv=[]
for i in kv:
newkv.append((i[0][:numr],i[1][:numr]))
return tuple(newkv)
def reset_kv(self):
self.stable_kv=None
@torch.no_grad()
def topK_genrate_batch(self,hidden_states,input_ids,head,max_length=4,use_cache=True):
#input_ids = torch.tensor([state[1:]])
input_ids = input_ids[:, 1:]
input_ids = input_ids.to(hidden_states.device)
sslogits=[]
self.reset()
if use_cache:
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids,use_cache=True)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
sslogits.append(last_headout)
topk_index = torch.topk(last_headout, 3, dim=-1).indices
# hidden_states = torch.cat((hidden_states, out_hidden[:, -1:]), dim=1)
hidden_states = out_hidden[:, -1:]
hidden_states = hidden_states.repeat(3, 1, 1)
#input_ids = input_ids.repeat(3, 1)
input_ids = topk_index.t()
past_key_values = self.repeat_kv(past_key_values,3)
out_hidden,past_key_values = self(hidden_states, input_ids=input_ids,past_key_values=past_key_values,use_cache=True)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
sslogits.append(last_headout)
hidden_states = out_hidden[0:1, -1:]
#input_ids = input_ids[:1]
topk_index = torch.topk(last_headout[:1], 3, dim=-1).indices
#hidden_states = torch.cat((hidden_states, out_hidden[0:1, -1:]), dim=1)
hidden_states = hidden_states.repeat(3, 1, 1)
#input_ids = input_ids.repeat(3, 1)
input_ids = topk_index.t()
out_hidden,past_key_values = self(hidden_states, input_ids=input_ids,past_key_values=past_key_values,use_cache=True)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
sslogits.append(last_headout)
#hidden_states = hidden_states[:1]
#input_ids = input_ids[:1]
topk_index = torch.topk(last_headout[:1], 3, dim=-1).indices
hidden_states = out_hidden[0:1, -1:]
input_ids = topk_index[:, :1]
past_key_values=self.reduce_kv(past_key_values,1)
out_hidden,past_key_values = self(hidden_states, input_ids=input_ids,past_key_values=past_key_values,use_cache=True)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
sslogits.append(last_headout)
else:
out_hidden = self(hidden_states, input_ids=input_ids)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
sslogits.append(last_headout)
topk_index=torch.topk(last_headout, 3, dim=-1).indices
hidden_states = torch.cat((hidden_states, out_hidden[:, -1:]), dim=1)
hidden_states=hidden_states.repeat(3,1,1)
input_ids=input_ids.repeat(3,1)
input_ids=torch.cat((input_ids,topk_index.t()),dim=-1)
out_hidden = self(hidden_states, input_ids=input_ids)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
sslogits.append(last_headout)
hidden_states=hidden_states[:1]
input_ids=input_ids[:1]
topk_index = torch.topk(last_headout[:1], 3, dim=-1).indices
hidden_states = torch.cat((hidden_states, out_hidden[0:1, -1:]), dim=1)
hidden_states = hidden_states.repeat(3, 1, 1)
input_ids = input_ids.repeat(3, 1)
input_ids = torch.cat((input_ids, topk_index.t()), dim=-1)
out_hidden = self(hidden_states, input_ids=input_ids)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
sslogits.append(last_headout)
hidden_states = hidden_states[:1]
input_ids = input_ids[:1]
topk_index = torch.topk(last_headout[:1], 3, dim=-1).indices
hidden_states = torch.cat((hidden_states, out_hidden[0:1, -1:]), dim=1)
input_ids = torch.cat((input_ids, topk_index[:,:1]), dim=-1)
out_hidden = self(hidden_states, input_ids=input_ids)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
sslogits.append(last_headout)
return torch.cat(sslogits)
@torch.no_grad()
def repeat_hidden(self,hidden_state,repeat_num):
new_hidden=[]
for id,i in enumerate(repeat_num):
new_hidden.append(hidden_state[:,id:id+1].repeat(1,i,1))
return torch.cat(new_hidden,dim=1)
@torch.no_grad()
def sample(self,tensor,k=1,replacement=True):
probabilities = torch.nn.functional.softmax(tensor, dim=1)
sampled_indices = torch.multinomial(probabilities, k,replacement=replacement)
sampled_probs = torch.gather(probabilities, 1, sampled_indices)
return sampled_indices,sampled_probs
@torch.no_grad()
def topK_genrate(self, hidden_states, input_ids, head, logits_processor,max_length=4, use_cache=True):
# test_=input_ids
# input_ids = torch.tensor([state[1:]])
input_ids = input_ids[:, 1:]
input_ids = input_ids.to(hidden_states.device)
ss_token,ss_prob = [],[]
len_posi=input_ids.shape[1]
self.reset()
if use_cache:
if hasattr(self, "stable_kv") and self.stable_kv is not None:
kv_len=self.stable_kv[0][0].shape[2]
out_hidden, past_key_values = self(hidden_states[:,kv_len:], input_ids=input_ids[:,kv_len:], past_key_values=self.stable_kv,use_cache=True)
else:
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids, use_cache=True)
self.stable_kv=past_key_values
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
for i in range(len(self.tree_buffer['tree_indices'])):
if logits_processor is not None:
topk_index,topk_prob=self.sample(last_headout,top_k)
else:
topk_index,topk_prob = torch.topk(last_headout, top_k, dim=-1).indices,torch.topk(last_headout, top_k, dim=-1).values
ss_token.append(topk_index)
ss_prob.append(topk_prob)
#topk_index = torch.topk(last_headout, top_k, dim=-1).indices
topk_index = topk_index.view(-1)
select_index=topk_index[self.tree_buffer['tree_indices'][i]]
#len_sq=select_index.shape[0]
input_ids=select_index[None,:]
if i==0:
hidden_states = out_hidden[:, -1:]
else:
hidden_states=out_hidden
hidden_states=self.repeat_hidden(hidden_states,self.tree_buffer["repeat_nums"][i])
#hidden_states = hidden_states.repeat(1,len_sq,1)
self.tree_mask=self.tree_buffer['attn_mask'][i]
position_ids=len_posi+self.tree_buffer["position_ids"][i]
out_hidden, past_key_values = self(hidden_states, input_ids=input_ids, past_key_values=past_key_values,
position_ids=position_ids,use_cache=True)
len_posi += 1
last_headout = head(out_hidden[0])
#sslogits.append(last_headout)
#print(select_index)
topk_index, topk_prob = self.sample(last_headout, top_k)
ss_token.append(topk_index)
ss_prob.append(topk_prob)
else:
# TODO
pass
return (torch.cat(ss_token),torch.cat(ss_prob))
@torch.no_grad()
def acc(self,data,head,max_length=5):
hidden_states=data["hidden_states"]
input_ids=data["input_ids"]
#attention_mask=data["attention_mask"]
loss_mask=data["loss_mask"]
sample_mask=data["sample_mask"]
target=data["target"]
total=[0 for _ in range(max_length)]
correct=[0 for _ in range(max_length)]
bs,sl=hidden_states.shape[0],hidden_states.shape[1]
target_headout = head(target)
hidden_states_headout=head(hidden_states)
for i in range(bs):
for j in range(sl):
if loss_mask[i,j]==0:
continue
single_hidden_states=hidden_states[i,:j]
single_input_ids=input_ids[i,:j]
single_hidden_states = single_hidden_states[None, :, :]
single_input_ids = single_input_ids[None, :]
for k in range(max_length):
tmp_in_target_headout = hidden_states_headout[i,single_hidden_states.shape[1]-1]
tmp_out_target_headout = target_headout[i, single_hidden_states.shape[1]-1]
target_in_token = torch.argmax(tmp_in_target_headout)
target_out_token = torch.argmax(tmp_out_target_headout)
tmp_token=input_ids[i,single_hidden_states.shape[1]-1]
tmp_sample_mask=sample_mask[i,single_hidden_states.shape[1]-1]
if not (target_in_token==tmp_token):
break
out_hidden = self(single_hidden_states, input_ids=single_input_ids)
last_hidden = out_hidden[:, -1]
last_headout = head(last_hidden)
token = torch.argmax(last_headout)
total[k] += 1
if token==target_out_token:
correct[k]+=1
else:
for kk in range(k,max_length):
total[kk]+=1
break
single_hidden_states=torch.cat((single_hidden_states,out_hidden[:,-1:]),dim=1)
single_input_ids = torch.cat((single_input_ids, torch.tensor([[token]]).to(single_input_ids.device)), dim=1)
acc=[correct[i]/total[i] for i in range(len(correct))]
return acc
class Vhead(nn.Module):
def __init__(self,ins=6566,outs=32000):
super().__init__()
self.fc = nn.Linear(ins,outs,bias=False)
def forward(self,x):
return self.fc(x)
import torch
def count_parameters(model):
return sum(p.numel() for p in model.parameters())
if __name__=='__main__':
import time
config=EConfig.from_pretrained('config.json')
model=Model(config)
model.cuda()
model.init_tree()
#model.half()
model.eval()
total_params = count_parameters(model)
print(f"总参数量: {total_params}")
head = torch.nn.Linear(6656, 32000, bias=False)
head.load_state_dict(torch.load("/home/lyh/code/nlp/ess/transhead_embeding_long/headf32.ckpt"))
head.cuda()
head.eval()
logits_processor=prepare_logits_processor()
with torch.no_grad():
ins=torch.randn(1,499,6656)
input_ids=torch.tensor([[29915,385,299,365,395]*100])
attention_mask=torch.tensor([[1,0,1]])
out0 = model.generate(ins.cuda(), input_ids.cuda(), head, use_cache=True)
out = model.generate(ins.cuda(), input_ids.cuda(), head, use_cache=False)
#model(ins,input_ids=input_ids,attention_mask=attention_mask)
outk=model.topK_genrate_batch(ins.cuda(),input_ids.cuda(),head,use_cache=False)
model.reset_kv()
outkcache = model.topK_genrate(ins[:,:400].cuda(), input_ids[:,:401].cuda(), head, None,use_cache=True)
outkcache1 = model.topK_genrate(ins.cuda(), input_ids.cuda(), head, use_cache=True)
#s=time.time()
# out0 = model.generate(ins.cuda(), input_ids.cuda(), head,use_cache=True)
# outs,past_key_values=model(ins[:,:2],input_ids=input_ids[:,:2],use_cache=True)
# outs1, past_key_values1 = model(ins[:,2:], input_ids=input_ids[:,2:], use_cache=True,past_key_values=past_key_values)
# outs0, past_key_values0 = model(ins, input_ids=input_ids, use_cache=True)
#print(time.time()-s)
for _ in range(10):
s = time.time()
outk=model.topK_genrate_batch(ins.cuda(),input_ids.cuda(),head,use_cache=True)
print(time.time() - s)
print('---'*10)
for _ in range(10):
s = time.time()
outk=model.topK_genrate(ins.cuda(),input_ids.cuda(),head,use_cache=True)
print(time.time() - s)