Spaces:
Sleeping
Sleeping
# Source: https://github.com/huggingface/transformers/blob/v4.31-release/src/transformers/models/llama/modeling_llama.py | |
# Modifications are denoted by the symbol: [MODIFIED] | |
""" PyTorch LLaMA model.""" | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
# [MODIFIED] Import from transformer library | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
SequenceClassifierOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers import LlamaConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "LlamaConfig" | |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, | |
dtype: torch.dtype, | |
device: torch.device, | |
past_key_values_length: int = 0, | |
): | |
""" | |
Create a causal mask for bi-directional self-attention. | |
Args: | |
input_ids_shape (torch.Size): The shape of input_ids tensor, typically (batch_size, tgt_len). | |
dtype (torch.dtype): The data type of the mask. | |
device (torch.device): The device on which the mask will be placed. | |
past_key_values_length (int, optional): The length of past key values. Default is 0. | |
Returns: | |
torch.Tensor: The causal mask tensor. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat( | |
[ | |
torch.zeros( | |
tgt_len, past_key_values_length, dtype=dtype, device=device | |
), | |
mask, | |
], | |
dim=-1, | |
) | |
return mask[None, None, :, :].expand( | |
bsz, 1, tgt_len, tgt_len + past_key_values_length | |
) | |
# Copied from transformers.models.bart.modeling_bart._expand_mask | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expand attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
Args: | |
mask (torch.Tensor): The attention mask tensor of shape `[bsz, seq_len]`. | |
dtype (torch.dtype): The data type of the mask. | |
tgt_len (Optional[int], optional): The target sequence length. If None, it defaults to the source sequence length. | |
Returns: | |
torch.Tensor: The expanded mask tensor. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill( | |
inverted_mask.to(torch.bool), torch.finfo(dtype).min | |
) | |
import torch.nn as nn | |
import torch | |
class LlamaRMSNorm(nn.Module): | |
""" | |
LlamaRMSNorm is equivalent to T5LayerNorm. | |
Args: | |
hidden_size (int): The size of the hidden states. | |
eps (float, optional): A small value to prevent division by zero. Default is 1e-6. | |
""" | |
def __init__(self, hidden_size, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
""" | |
Apply LlamaRMSNorm to the input hidden states. | |
Args: | |
hidden_states (torch.Tensor): Input hidden states. | |
Returns: | |
torch.Tensor: The normalized and scaled hidden states. | |
""" | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
class LlamaRotaryEmbedding(nn.Module): | |
""" | |
Llama Rotary Positional Embedding Module. | |
Args: | |
dim (int): The dimension of the embedding. | |
max_position_embeddings (int, optional): The maximum position for embeddings. Default is 2048. | |
base (int, optional): The base value for rotational encoding. Default is 10000. | |
device (str, optional): The device on which the computation will be performed. Default is None. | |
""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / ( | |
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | |
) | |
self.register_buffer("inv_freq", inv_freq) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, | |
device=self.inv_freq.device, | |
dtype=torch.get_default_dtype(), | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
""" | |
Set the cosine and sine cache for positional embeddings. | |
Args: | |
seq_len (int): The sequence length. | |
device (str): The device on which the cache tensors will be stored. | |
dtype: The data type of the cache tensors. | |
""" | |
self.max_seq_len_cached = seq_len | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | |
) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False | |
) | |
self.register_buffer( | |
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False | |
) | |
def forward(self, x, seq_len=None): | |
""" | |
Forward pass of the LlamaRotaryEmbedding module. | |
Args: | |
x (torch.Tensor): Input tensor of shape [bs, num_attention_heads, seq_len, head_size]. | |
seq_len (int): The sequence length. If greater than the cached length, the cache will be updated. | |
Returns: | |
tuple: A tuple containing two tensors, the cosine and sine embeddings, both of shape [1, 1, seq_len, dim]. | |
""" | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
) | |
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding): | |
""" | |
LlamaRotaryEmbedding extended with linear scaling. | |
This class adds linear scaling to LlamaRotaryEmbedding. Credits to the Reddit user /u/kaiokendev. | |
Args: | |
dim (int): The dimension of the embedding. | |
max_position_embeddings (int, optional): The maximum number of position embeddings. Default is 2048. | |
base (int, optional): The base value for the rotational embeddings. Default is 10000. | |
device (str or torch.device, optional): The device where the embeddings should be stored. Default is None. | |
scaling_factor (float, optional): The scaling factor for the embeddings. Default is 1.0. | |
""" | |
def __init__( | |
self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None, | |
scaling_factor=1.0, | |
): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
""" | |
Set the cosine and sine cache for the rotary embeddings. | |
Args: | |
seq_len (int): The sequence length. | |
device (str or torch.device): The device where the cache should be stored. | |
dtype: The data type for the cache. | |
""" | |
self.max_seq_len_cached = seq_len | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | |
) | |
t = t / self.scaling_factor | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False | |
) | |
self.register_buffer( | |
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False | |
) | |
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding): | |
""" | |
LlamaRotaryEmbedding extended with Dynamic NTK scaling. | |
Credits to the Reddit users /u/bloc97 and /u/emozilla. | |
""" | |
def __init__( | |
self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None, | |
scaling_factor=1.0, | |
): | |
""" | |
Initialize the LlamaDynamicNTKScalingRotaryEmbedding. | |
Args: | |
dim (int): The dimensionality of the embedding. | |
max_position_embeddings (int, optional): Maximum number of position embeddings. Default is 2048. | |
base (int, optional): Base value for scaling calculations. Default is 10000. | |
device: The device to place tensors on. If None, uses the default device. | |
scaling_factor (float, optional): Scaling factor for NTK scaling. Default is 1.0. | |
""" | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
""" | |
Set the cached values for cosine and sine. | |
Args: | |
seq_len (int): The sequence length. | |
device: The device to place tensors on. | |
dtype: The data type of tensors. | |
""" | |
self.max_seq_len_cached = seq_len | |
if seq_len > self.max_position_embeddings: | |
base = self.base * ( | |
(self.scaling_factor * seq_len / self.max_position_embeddings) | |
- (self.scaling_factor - 1) | |
) ** (self.dim / (self.dim - 2)) | |
inv_freq = 1.0 / ( | |
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | |
) | |
self.register_buffer("inv_freq", inv_freq) | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | |
) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False | |
) | |
self.register_buffer( | |
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False | |
) | |
def rotate_half(x): | |
""" | |
Rotates half the hidden dimensions of the input. | |
Args: | |
x (torch.Tensor): Input tensor. | |
Returns: | |
torch.Tensor: Tensor with half of its hidden dimensions rotated. | |
""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2:] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): | |
""" | |
Apply rotary position embeddings to query and key tensors. | |
Args: | |
q (torch.Tensor): Query tensor. | |
k (torch.Tensor): Key tensor. | |
cos (torch.Tensor): Cosine values. | |
sin (torch.Tensor): Sine values. | |
position_ids (torch.Tensor): Position IDs. | |
Returns: | |
torch.Tensor: Query and key tensors with rotary position embeddings applied. | |
""" | |
cos = cos.squeeze(1).squeeze(0) | |
sin = sin.squeeze(1).squeeze(0) | |
cos = cos[position_ids].unsqueeze(1) | |
sin = sin[position_ids].unsqueeze(1) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class LlamaMLP(nn.Module): | |
""" | |
LlamaMLP is a multi-layer perceptron module used in the Llama model. | |
Args: | |
config: The configuration for the MLP. | |
Attributes: | |
pretraining_tp (int): The pretraining time periods. | |
hidden_size (int): The size of the hidden layer. | |
intermediate_size (int): The size of the intermediate layer. | |
gate_proj (nn.Linear): The linear projection for gating. | |
up_proj (nn.Linear): The linear projection for the up projection. | |
down_proj (nn.Linear): The linear projection for the down projection. | |
act_fn: The activation function. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.pretraining_tp = config.pretraining_tp | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, x): | |
""" | |
Forward pass of the MLP. | |
Args: | |
x: Input tensor. | |
Returns: | |
torch.Tensor: Output tensor. | |
""" | |
if self.pretraining_tp > 1: | |
slice = self.intermediate_size // self.pretraining_tp | |
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) | |
up_proj_slices = self.up_proj.weight.split(slice, dim=0) | |
down_proj_slices = self.down_proj.weight.split(slice, dim=1) | |
gate_proj = torch.cat( | |
[F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], | |
dim=-1, | |
) | |
up_proj = torch.cat( | |
[F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], | |
dim=-1, | |
) | |
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) | |
down_proj = [ | |
F.linear(intermediate_states[i], down_proj_slices[i]) | |
for i in range(self.pretraining_tp) | |
] | |
down_proj = sum(down_proj) | |
else: | |
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
return down_proj | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
Repeat key and value tensors n times along the specified dimension. | |
Args: | |
hidden_states (torch.Tensor): Input tensor with shape (batch, num_key_value_heads, seqlen, head_dim). | |
n_rep (int): Number of times to repeat. | |
Returns: | |
torch.Tensor: Repeated tensor with shape (batch, num_key_value_heads * n_rep, seqlen, head_dim). | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand( | |
batch, num_key_value_heads, n_rep, slen, head_dim | |
) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class LlamaAttention(nn.Module): | |
""" | |
LlamaAttention is a multi-headed attention module based on the 'Attention Is All You Need' paper. | |
Args: | |
config (LlamaConfig): Configuration for the attention module. | |
Attributes: | |
config (LlamaConfig): Configuration for the attention module. | |
hidden_size (int): The size of the hidden layer. | |
num_heads (int): The number of attention heads. | |
head_dim (int): The dimension of each attention head. | |
num_key_value_heads (int): The number of key-value attention heads. | |
num_key_value_groups (int): The number of key-value groups. | |
pretraining_tp (int): The pretraining time periods. | |
max_position_embeddings (int): The maximum position embeddings. | |
""" | |
def __init__(self, config: LlamaConfig): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.pretraining_tp = config.pretraining_tp | |
self.max_position_embeddings = config.max_position_embeddings | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear( | |
self.hidden_size, self.num_heads * self.head_dim, bias=False | |
) | |
self.k_proj = nn.Linear( | |
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False | |
) | |
self.v_proj = nn.Linear( | |
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False | |
) | |
self.o_proj = nn.Linear( | |
self.num_heads * self.head_dim, self.hidden_size, bias=False | |
) | |
self._init_rope() | |
def _init_rope(self): | |
if self.config.rope_scaling is None: | |
self.rotary_emb = LlamaRotaryEmbedding( | |
self.head_dim, max_position_embeddings=self.max_position_embeddings | |
) | |
else: | |
scaling_type = self.config.rope_scaling["type"] | |
scaling_factor = self.config.rope_scaling["factor"] | |
if scaling_type == "linear": | |
self.rotary_emb = LlamaLinearScalingRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
) | |
elif scaling_type == "dynamic": | |
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
) | |
else: | |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return ( | |
tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
if self.pretraining_tp > 1: | |
key_value_slicing = ( | |
self.num_key_value_heads * self.head_dim | |
) // self.pretraining_tp | |
query_slices = self.q_proj.weight.split( | |
(self.num_heads * self.head_dim) // self.pretraining_tp, dim=0 | |
) | |
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | |
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | |
query_states = [ | |
F.linear(hidden_states, query_slices[i]) | |
for i in range(self.pretraining_tp) | |
] | |
query_states = torch.cat(query_states, dim=-1) | |
key_states = [ | |
F.linear(hidden_states, key_slices[i]) | |
for i in range(self.pretraining_tp) | |
] | |
key_states = torch.cat(key_states, dim=-1) | |
value_states = [ | |
F.linear(hidden_states, value_slices[i]) | |
for i in range(self.pretraining_tp) | |
] | |
value_states = torch.cat(value_states, dim=-1) | |
else: | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view( | |
bsz, q_len, self.num_heads, self.head_dim | |
).transpose(1, 2) | |
key_states = key_states.view( | |
bsz, q_len, self.num_key_value_heads, self.head_dim | |
).transpose(1, 2) | |
value_states = value_states.view( | |
bsz, q_len, self.num_key_value_heads, self.head_dim | |
).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids | |
) | |
# [MODIFIED] Using KVCache mechanism for preallocated GPU memory optimization | |
# past_key_value is utilized to leverage previously computed key and value states. | |
# If past_key_value is available, reuse the states for k, v, and self_attention. | |
if past_key_value is not None: | |
key_states = past_key_value[0].cat(key_states, dim=2) | |
value_states = past_key_value[1].cat(value_states, dim=2) | |
# Reset past_key_value to avoid return past_key_value. | |
past_key_value = None | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul( | |
query_states, key_states.transpose(2, 3) | |
) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax( | |
attn_weights, dim=-1, dtype=torch.float32 | |
).to(query_states.dtype) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
if self.pretraining_tp > 1: | |
attn_output = attn_output.split( | |
self.hidden_size // self.pretraining_tp, dim=2 | |
) | |
o_proj_slices = self.o_proj.weight.split( | |
self.hidden_size // self.pretraining_tp, dim=1 | |
) | |
attn_output = sum( | |
[ | |
F.linear(attn_output[i], o_proj_slices[i]) | |
for i in range(self.pretraining_tp) | |
] | |
) | |
else: | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class LlamaDecoderLayer(nn.Module): | |
""" | |
LlamaDecoderLayer represents a single layer of the Llama decoder. | |
Args: | |
config (LlamaConfig): Configuration for the decoder layer. | |
Attributes: | |
hidden_size (int): The size of the hidden layer. | |
self_attn (LlamaAttention): Multi-headed self-attention module. | |
mlp (LlamaMLP): Multi-layer perceptron module. | |
input_layernorm (LlamaRMSNorm): Layer normalization for input. | |
post_attention_layernorm (LlamaRMSNorm): Layer normalization after self-attention. | |
""" | |
def __init__(self, config: LlamaConfig): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = LlamaAttention(config=config) | |
self.mlp = LlamaMLP(config) | |
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = LlamaRMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Tuple[ | |
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] | |
]: | |
""" | |
Forward pass for the LlamaDecoderLayer. | |
Args: | |
hidden_states (torch.FloatTensor): Input tensor of shape `(batch, seq_len, embed_dim)`. | |
attention_mask (torch.FloatTensor, optional): Attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
position_ids (torch.LongTensor, optional): Positional IDs tensor. | |
past_key_value (Tuple[torch.FloatTensor], optional): Cached past key and value projection states. | |
output_attentions (bool, optional): Whether or not to return the attentions tensors of all attention layers. | |
use_cache (bool, optional): If set to `True`, `past_key_values` key-value states are returned and can be | |
used to speed up decoding. | |
Returns: | |
Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: Tuple containing: | |
- hidden_states (torch.FloatTensor): Output tensor. | |
- self_attn_weights (Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]): Self-attention weights if | |
`output_attentions` is `True`. | |
- present_key_value (Optional[Tuple[torch.FloatTensor]]): Cached key and value projection states if | |
`use_cache` is `True`. | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
LLAMA_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`LlamaConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class LlamaPreTrainedModel(PreTrainedModel): | |
config_class = LlamaConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["LlamaDecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, LlamaModel): | |
module.gradient_checkpointing = value | |
LLAMA_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class LlamaModel(LlamaPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] | |
Args: | |
config: LlamaConfig | |
""" | |
def __init__(self, config: LlamaConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding( | |
config.vocab_size, config.hidden_size, self.padding_idx | |
) | |
self.layers = nn.ModuleList( | |
[LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)] | |
) | |
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
def _prepare_decoder_attention_mask( | |
self, attention_mask, input_shape, inputs_embeds, past_key_values_length | |
): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
# inputs_embeds.dtype, | |
torch.float32, # [MODIFIED] force to cast to float32 | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask( | |
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
).to(inputs_embeds.device) | |
combined_attention_mask = ( | |
expanded_attn_mask | |
if combined_attention_mask is None | |
else expanded_attn_mask + combined_attention_mask | |
) | |
if hasattr(self, "tree_mask") and self.tree_mask is not None: | |
tree_mask = self.tree_mask | |
tree_len = tree_mask.size(-1) | |
combined_attention_mask[:, :, -tree_len:, -tree_len:][ | |
tree_mask == 0 | |
] = combined_attention_mask.min() | |
return combined_attention_mask | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values=None, # [MODIFIED] past_key_value is KVCache class | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError( | |
"You have to specify either decoder_input_ids or decoder_inputs_embeds" | |
) | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, | |
seq_length + past_key_values_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# embed positions | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(batch_size, seq_length_with_past), | |
dtype=torch.bool, | |
device=inputs_embeds.device, | |
) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
hidden_states = inputs_embeds | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
for idx, decoder_layer in enumerate(self.layers): | |
# if idx==16: | |
# print(idx) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
past_key_value = ( | |
past_key_values[idx] if past_key_values is not None else None | |
) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, output_attentions, None) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
attention_mask, | |
position_ids, | |
None, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | |
if v is not None | |
) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class LlamaForCausalLM(LlamaPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = LlamaModel(config) | |
self.pretraining_tp = config.pretraining_tp | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values=None, # [MODIFIED] past_key_value is KVCache class | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, LlamaForCausalLM | |
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | |
>>> prompt = "Hey, are you conscious? Can you talk to me?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
```""" | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
if self.pretraining_tp > 1: | |
lm_head_slices = self.lm_head.weight.split( | |
self.vocab_size // self.pretraining_tp, dim=0 | |
) | |
logits = [ | |
F.linear(hidden_states, lm_head_slices[i]) | |
for i in range(self.pretraining_tp) | |
] | |
logits = torch.cat(logits, dim=-1) | |
else: | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
**kwargs, | |
): | |
if past_key_values: | |
input_ids = input_ids[:, -1:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past | |
), | |
) | |
return reordered_past | |
class LlamaForSequenceClassification(LlamaPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = LlamaModel(config) | |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
transformer_outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError( | |
"Cannot handle batch sizes > 1 if no padding token is defined." | |
) | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = ( | |
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 | |
).to(logits.device) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[ | |
torch.arange(batch_size, device=logits.device), sequence_lengths | |
] | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and ( | |
labels.dtype == torch.long or labels.dtype == torch.int | |
): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
pooled_logits.view(-1, self.num_labels), labels.view(-1) | |
) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |