File size: 5,576 Bytes
02259d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# This is Multi-reference timbre encoder

import torch
from torch import nn
from torch.nn.utils import remove_weight_norm, weight_norm
from module.attentions import MultiHeadAttention

class MRTE(nn.Module):
    def __init__(self, 
                 content_enc_channels=192,
                 hidden_size=512,
                 out_channels=192,
                 kernel_size=5,
                 n_heads=4,
                 ge_layer = 2
                 ):
        super(MRTE, self).__init__()
        self.cross_attention = MultiHeadAttention(hidden_size,hidden_size,n_heads)
        self.c_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
        self.text_pre = nn.Conv1d(content_enc_channels,hidden_size, 1)
        self.c_post = nn.Conv1d(hidden_size,out_channels, 1)

    def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
        if(ge==None):ge=0
        attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)

        ssl_enc = self.c_pre(ssl_enc * ssl_mask)
        text_enc = self.text_pre(text * text_mask)
        if test != None:
            if test == 0:
                x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
            elif test == 1:
                x = ssl_enc + ge
            elif test ==2:
                x = self.cross_attention(ssl_enc*0 * ssl_mask, text_enc * text_mask, attn_mask) + ge
            else:
                raise ValueError("test should be 0,1,2")
        else:
            x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
        x = self.c_post(x * ssl_mask)
        return x
        

class SpeakerEncoder(torch.nn.Module):
    def __init__(self, mel_n_channels=80, model_num_layers=2, model_hidden_size=256, model_embedding_size=256):
        super(SpeakerEncoder, self).__init__()
        self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
        self.linear = nn.Linear(model_hidden_size, model_embedding_size)
        self.relu = nn.ReLU()

    def forward(self, mels):
        self.lstm.flatten_parameters()
        _, (hidden, _) = self.lstm(mels.transpose(-1, -2))
        embeds_raw = self.relu(self.linear(hidden[-1]))
        return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)


class MELEncoder(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 hidden_channels,
                 kernel_size,
                 dilation_rate,
                 n_layers):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers

        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
        self.proj = nn.Conv1d(hidden_channels, out_channels, 1)

    def forward(self, x):
        # print(x.shape,x_lengths.shape)
        x = self.pre(x)
        x = self.enc(x)
        x = self.proj(x)
        return x
    

class WN(torch.nn.Module):
  def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
    super(WN, self).__init__()
    assert(kernel_size % 2 == 1)
    self.hidden_channels =hidden_channels
    self.kernel_size = kernel_size
    self.dilation_rate = dilation_rate
    self.n_layers = n_layers

    self.in_layers = torch.nn.ModuleList()
    self.res_skip_layers = torch.nn.ModuleList()

    for i in range(n_layers):
      dilation = dilation_rate ** i
      padding = int((kernel_size * dilation - dilation) / 2)
      in_layer = nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
                                 dilation=dilation, padding=padding)
      in_layer = weight_norm(in_layer)
      self.in_layers.append(in_layer)

      # last one is not necessary
      if i < n_layers - 1:
        res_skip_channels = 2 * hidden_channels
      else:
        res_skip_channels = hidden_channels

      res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
      res_skip_layer = weight_norm(res_skip_layer, name='weight')
      self.res_skip_layers.append(res_skip_layer)

  def forward(self, x):
    output = torch.zeros_like(x)
    n_channels_tensor = torch.IntTensor([self.hidden_channels])

    for i in range(self.n_layers):
      x_in = self.in_layers[i](x)

      acts = fused_add_tanh_sigmoid_multiply(
          x_in,
          n_channels_tensor)

      res_skip_acts = self.res_skip_layers[i](acts)
      if i < self.n_layers - 1:
        res_acts = res_skip_acts[:,:self.hidden_channels,:]
        x = (x + res_acts)
        output = output + res_skip_acts[:,self.hidden_channels:,:]
      else:
        output = output + res_skip_acts
    return output

  def remove_weight_norm(self):
    for l in self.in_layers:
      remove_weight_norm(l)
    for l in self.res_skip_layers:
      remove_weight_norm(l)


@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input, n_channels):
  n_channels_int = n_channels[0]
  t_act = torch.tanh(input[:, :n_channels_int, :])
  s_act = torch.sigmoid(input[:, n_channels_int:, :])
  acts = t_act * s_act
  return acts



if __name__ == '__main__':
    content_enc = torch.randn(3,192,100)
    content_mask = torch.ones(3,1,100)
    ref_mel = torch.randn(3,128,30)
    ref_mask = torch.ones(3,1,30)
    model = MRTE()
    out = model(content_enc,content_mask,ref_mel,ref_mask)
    print(out.shape)