Spaces:
Sleeping
Sleeping
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/lr_schedulers.py | |
import math | |
import torch | |
from matplotlib import pyplot as plt | |
from torch import nn | |
from torch.optim import Adam | |
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler): | |
""" | |
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers. | |
""" | |
def __init__(self, | |
optimizer, | |
init_lr, | |
peak_lr, | |
end_lr, | |
warmup_steps=10000, | |
total_steps=400000, | |
current_step=0): | |
self.init_lr = init_lr | |
self.peak_lr = peak_lr | |
self.end_lr = end_lr | |
self.optimizer = optimizer | |
self._warmup_rate = (peak_lr - init_lr) / warmup_steps | |
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps) | |
self._current_step = current_step | |
self.lr = init_lr | |
self.warmup_steps = warmup_steps | |
self.total_steps = total_steps | |
self._last_lr = [self.lr] | |
def set_lr(self, lr): | |
self._last_lr = [g['lr'] for g in self.optimizer.param_groups] | |
for g in self.optimizer.param_groups: | |
# g['lr'] = lr | |
g['lr'] = self.end_lr###锁定用线性 | |
def step(self): | |
if self._current_step < self.warmup_steps: | |
lr = self.init_lr + self._warmup_rate * self._current_step | |
elif self._current_step > self.total_steps: | |
lr = self.end_lr | |
else: | |
decay_ratio = (self._current_step - self.warmup_steps) / ( | |
self.total_steps - self.warmup_steps) | |
if decay_ratio < 0.0 or decay_ratio > 1.0: | |
raise RuntimeError( | |
"Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings." | |
) | |
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) | |
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr) | |
self.lr=lr=self.end_lr=0.002###锁定用线性###不听话,直接锁定! | |
self.set_lr(lr) | |
self.lr = lr | |
self._current_step += 1 | |
return self.lr | |
if __name__ == '__main__': | |
m = nn.Linear(10, 10) | |
opt = Adam(m.parameters(), lr=1e-4) | |
s = WarmupCosineLRSchedule( | |
opt, | |
1e-6, | |
2e-4, | |
1e-6, | |
warmup_steps=2000, | |
total_steps=20000, | |
current_step=0) | |
lrs = [] | |
for i in range(25000): | |
s.step() | |
lrs.append(s.lr) | |
print(s.lr) | |
plt.plot(lrs) | |
plt.plot(range(0, 25000), lrs) | |
plt.show() | |