import os import json import pandas as pd import traceback import PyPDF2 import streamlit as st from util import read_flie, get_table_data from MCQGenerator import final_chain from dotenv import load_dotenv from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback from langchain.chains import SequentialChain st.set_page_config(page_title = "MCQ Generater", page_icon='https://archive.org/download/github.com-langchain-ai-langchain_-_2023-09-20_11-56-54/cover.jpg') st.title("🤖 MCQ Generater 🦜🔗") st.image('https://miro.medium.com/v2/resize:fit:1400/1*odEY2uy37q-GTb8-u7_j8Q.png') with open('D:\Project\Response.json','r') as f: RESPONSE_JSON = json.load(f) # taking inputs with st.form("user inputs") : # file upload uploaded_file = st.file_uploader('upload PDF or txt File 👨‍🚀') # number of mcq num_mcq = st.number_input('no. of mcq 🎯',min_value = 2,max_value = 70) # subject subject = st.text_input('subject 📚',max_chars = 50) level = st.text_input('level of hardness 👩🏻‍💻', max_chars = 25, placeholder = 'simple') submit = st.form_submit_button("Create") if uploaded_file and submit is not None and subject and level and num_mcq : with st.spinner('loading...😎') : try : # calling the read_file func in utils and it will the uploaded doc text text = read_flie(uploaded_file) with get_openai_callback() as cb : response = final_chain( { 'text' : text, 'number' : num_mcq, 'subject' : subject, 'level' : level, 'response_json' : json.dumps(RESPONSE_JSON) } ) except Exception as e : raise Exception('Error coming : Try again later 🕵️‍♀️') else : # print(response) if isinstance(response,dict): # make the DataFrame quiz = response.get('quiz',None) if quiz is not None : table_data = get_table_data(quiz) if table_data is not None : df = pd.DataFrame(table_data) df.index = df.index+1 # index in the table/df start from 1 and not from 0 st.table(df) # displaying review as well st.header('Review 🧙🏽') st.text_area(label = ' ',value=response['complexity']) else : st.error("Sorry : There is an Error in Table Data 🕵️‍♀️") else : st.error("Sorry : Error in Quiz 🕵️‍♀️") else : st.write(response)