File size: 12,641 Bytes
c2a24ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import datetime
import os
import time
import torch
import torch.utils.data
from torch import nn
from bert.multimodal_bert import MultiModalBert
import torchvision
from lib import multimodal_segmentation_ppm
import transforms as T
import utils
import numpy as np
from PIL import Image
import torch.nn.functional as F
from modeling.MaskFormerModel import MaskFormerHead
from addict import Dict
from bert.modeling_bert import BertLMPredictionHead, BertEncoder
def get_dataset(image_set, transform, args):
from data.dataset_refer_bert import ReferDataset
ds = ReferDataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None,
eval_mode=True
)
num_classes = 2
return ds, num_classes
def evaluate(model, data_loader, device):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
# evaluation variables
cum_I, cum_U = 0, 0
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_IoU = []
header = 'Test:'
with torch.no_grad():
for data in metric_logger.log_every(data_loader, 100, header):
image, target, sentences, attentions = data
image, target, sentences, attentions = image.to(device), target.to(device), \
sentences.to(device), attentions.to(device)
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
target = target.cpu().data.numpy()
for j in range(sentences.size(-1)):
#if bert_model is not None:
# last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
# embedding = last_hidden_states.permute(0, 2, 1)
# output = model(image, embedding, l_mask=attentions[:, :, j].unsqueeze(-1))
#else:
output = model(image, sentences[:, :, j], attentions[:, :, j])
mask_cls_results = output["pred_logits"]
mask_pred_results = output["pred_masks"]
target_shape = target.shape[-2:]
mask_pred_results = F.interpolate(mask_pred_results, size=target_shape, mode='bilinear', align_corners=True)
pred_masks = model.semantic_inference(mask_cls_results, mask_pred_results)
output = pred_masks[0]
output = output.cpu()
#print(output.shape)
#output_mask = output.argmax(1).data.numpy()
output_mask = (output > 0.5).data.numpy()
I, U = computeIoU(output_mask, target)
if U == 0:
this_iou = 0.0
else:
this_iou = I*1.0/U
mean_IoU.append(this_iou)
cum_I += I
cum_U += U
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
seg_total += 1
#del image, target, sentences, attentions, output, output_mask
#if bert_model is not None:
# del last_hidden_states, embedding
mean_IoU = np.array(mean_IoU)
mIoU = np.mean(mean_IoU)
print('Final results:')
print('Mean IoU is %.2f\n' % (mIoU*100.))
results_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
print(results_str)
def get_transform(args):
transforms = [T.Resize(args.img_size, args.img_size),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
return T.Compose(transforms)
def computeIoU(pred_seg, gd_seg):
I = np.sum(np.logical_and(pred_seg, gd_seg))
U = np.sum(np.logical_or(pred_seg, gd_seg))
return I, U
class WrapperModel(nn.Module):
def __init__(self, image_model, language_model, classifier, args) :
super(WrapperModel, self).__init__()
self.image_model = image_model
self.language_model = language_model
self.classifier = classifier
self.lang_proj = nn.Linear(768,256)
config = Dict({
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"gradient_checkpointing": False,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 512,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
#"max_position_embeddings": 16+20,
"model_type": "bert",
"num_attention_heads": 8,
"num_hidden_layers": 8,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.6.0.dev0",
"type_vocab_size": 2,
"use_cache": True,
"vocab_size": 30522
})
self.mlm_transformer = BertEncoder(config)
self.lang_proj = nn.Linear(768,256)
self.mlm_vis_proj = nn.Conv2d(1024,512,1)
self.mlm_lang_proj = nn.Linear(768,512)
#print(vis_proj)
self.mlm_head = BertLMPredictionHead(config)
assert args.img_size % 4 == 0
num_img_tokens = 20 + ((args.img_size // 4)//8) ** 2
print(num_img_tokens)
self.mlm_pos_embeds = nn.Embedding(num_img_tokens+1, 512)
self.mlm_modal_embeds = nn.Embedding(3, 512)
self.mlm_mask_embed = nn.Embedding(1, 512)
self.mlm_pos_mlp = nn.Sequential(
nn.Linear(2, 512),
nn.LayerNorm(512),
nn.Linear(512,512),
nn.GELU()
)
def _get_binary_mask(self, target):
# 返回每类的binary mask
y, x = target.size()
target_onehot = torch.zeros(self.num_classes + 1, y, x)
target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
return target_onehot[1:]
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)
return semseg
def forward(self, image, sentences, attentions):
input_shape = image.shape[-2:]
l_mask = attentions.unsqueeze(dim=-1)
i0, Wh, Ww = self.image_model.forward_stem(image)
l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)
i1 = self.image_model.forward_stage1(i0, Wh, Ww)
l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
i1_residual, H, W, i1_temp, Wh, Ww = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask)
i1 = i1_temp
i2 = self.image_model.forward_stage2(i1, Wh, Ww)
l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
i2_residual, H, W, i2_temp, Wh, Ww = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask)
i2 = i2_temp
i3 = self.image_model.forward_stage3(i2, Wh, Ww)
l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
i3_residual, H, W, i3_temp, Wh, Ww = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask)
i3 = i3_temp
i4 = self.image_model.forward_stage4(i3, Wh, Ww)
l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
i4_residual, H, W, i4_temp, Wh, Ww = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask)
i4 = i4_temp
#i1_residual, i2_residual, i3_residual, i4_residual = features
#x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
#x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
outputs = {}
outputs['s1'] = i1_residual
outputs['s2'] = i2_residual
outputs['s3'] = i3_residual
outputs['s4'] = i4_residual
predictions, _ = self.classifier(outputs)
return predictions
def main(args):
#def main(local_rank, args):
#device = torch.device(args.device)
device = 'cuda'
dataset_test, _ = get_dataset(args.split, get_transform(args=args), args)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1,
sampler=test_sampler, num_workers=args.workers)
print(args.model)
single_model = multimodal_segmentation_ppm.__dict__[args.model](pretrained='',args=args)
#single_model = MultiModalFocal(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], focal_windows=[9,9,9,9], drop_path_rate=0.3)
#single_model.init_weights('./focalnet_base_lrf.pth')
checkpoint = torch.load(args.resume, map_location='cpu')
#single_model.load_state_dict(checkpoint['model'])
#model = single_model.to(device)
if args.model != 'lavt_one':
model_class = MultiModalBert
#single_bert_model = model_class.from_pretrained(args.ck_bert, embed_dim=128)
single_bert_model = model_class.from_pretrained(args.ck_bert, embed_dim=single_model.backbone.embed_dim)
# work-around for a transformers bug; need to update to a newer version of transformers to remove these two lines
if args.ddp_trained_weights:
single_bert_model.pooler = None
#single_bert_model.load_state_dict(checkpoint['bert_model'])
#bert_model = single_bert_model.to(device)
else:
bert_model = None
#model = WrapperModel(single_model.backbone, single_bert_model, single_model.classifier)
#model.load_state_dict(checkpoint['model'])
#model.to(device)
input_shape = dict()
input_shape['s1'] = Dict({'channel': 128, 'stride': 4})
input_shape['s2'] = Dict({'channel': 256, 'stride': 8})
input_shape['s3'] = Dict({'channel': 512, 'stride': 16})
input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})
cfg = Dict()
cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
cfg.MODEL.MASK_FORMER.DROPOUT = 0.0
cfg.MODEL.MASK_FORMER.NHEADS = 8
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]
cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
cfg.MODEL.MASK_FORMER.PRE_NORM = False
maskformer_head = MaskFormerHead(cfg, input_shape)
#maskformer_head = torch.nn.SyncBatchNorm.convert_sync_batchnorm(maskformer_head)
#maskformer_head.cuda()
#maskformer_head = torch.nn.parallel.DistributedDataParallel(maskformer_head, device_ids=[args.local_rank], find_unused_parameters=False)
#single_head = maskformer_head.module
#print(single_head)
model = WrapperModel(single_model.backbone, single_bert_model, maskformer_head, args)
model.load_state_dict(checkpoint['model'])
model.to(device)
#model.cuda()
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
#single_model = model.module
#model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
#single_model = model.module
evaluate(model, data_loader_test, device=device)
if __name__ == "__main__":
from args import get_parser
parser = get_parser()
args = parser.parse_args()
print('Image size: {}'.format(str(args.img_size)))
print(args)
main(args)
#mp.spawn(main, args=(args,), nprocs=torch.cuda.device_count())
|