File size: 12,641 Bytes
c2a24ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn

from bert.multimodal_bert import MultiModalBert
import torchvision

from lib import multimodal_segmentation_ppm
import transforms as T
import utils

import numpy as np
from PIL import Image
import torch.nn.functional as F

from modeling.MaskFormerModel import MaskFormerHead
from addict import Dict
from bert.modeling_bert import BertLMPredictionHead, BertEncoder

def get_dataset(image_set, transform, args):
    from data.dataset_refer_bert import ReferDataset
    ds = ReferDataset(args,
                      split=image_set,
                      image_transforms=transform,
                      target_transforms=None,
                      eval_mode=True
                      )
    num_classes = 2
    return ds, num_classes


def evaluate(model, data_loader, device):
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")

    # evaluation variables
    cum_I, cum_U = 0, 0
    eval_seg_iou_list = [.5, .6, .7, .8, .9]
    seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
    seg_total = 0
    mean_IoU = []
    header = 'Test:'

    with torch.no_grad():
        for data in metric_logger.log_every(data_loader, 100, header):
            image, target, sentences, attentions = data
            image, target, sentences, attentions = image.to(device), target.to(device), \
                                                   sentences.to(device), attentions.to(device)
            sentences = sentences.squeeze(1)
            attentions = attentions.squeeze(1)
            target = target.cpu().data.numpy()
            for j in range(sentences.size(-1)):
                #if bert_model is not None:
                #    last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
                #    embedding = last_hidden_states.permute(0, 2, 1)
                #    output = model(image, embedding, l_mask=attentions[:, :, j].unsqueeze(-1))
                #else:
                output = model(image, sentences[:, :, j], attentions[:, :, j])
                mask_cls_results = output["pred_logits"]
                mask_pred_results = output["pred_masks"]

                target_shape = target.shape[-2:]
                mask_pred_results = F.interpolate(mask_pred_results, size=target_shape, mode='bilinear', align_corners=True)

                pred_masks = model.semantic_inference(mask_cls_results, mask_pred_results)                
                output = pred_masks[0]

                output = output.cpu()
                #print(output.shape)
                #output_mask = output.argmax(1).data.numpy()
                output_mask = (output > 0.5).data.numpy()
                I, U = computeIoU(output_mask, target)
                if U == 0:
                    this_iou = 0.0
                else:
                    this_iou = I*1.0/U
                mean_IoU.append(this_iou)
                cum_I += I
                cum_U += U
                for n_eval_iou in range(len(eval_seg_iou_list)):
                    eval_seg_iou = eval_seg_iou_list[n_eval_iou]
                    seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
                seg_total += 1

            #del image, target, sentences, attentions, output, output_mask
            #if bert_model is not None:
            #    del last_hidden_states, embedding

    mean_IoU = np.array(mean_IoU)
    mIoU = np.mean(mean_IoU)
    print('Final results:')
    print('Mean IoU is %.2f\n' % (mIoU*100.))
    results_str = ''
    for n_eval_iou in range(len(eval_seg_iou_list)):
        results_str += '    precision@%s = %.2f\n' % \
                       (str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
    results_str += '    overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
    print(results_str)


def get_transform(args):
    transforms = [T.Resize(args.img_size, args.img_size),
                  T.ToTensor(),
                  T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                  ]

    return T.Compose(transforms)


def computeIoU(pred_seg, gd_seg):
    I = np.sum(np.logical_and(pred_seg, gd_seg))
    U = np.sum(np.logical_or(pred_seg, gd_seg))

    return I, U

class WrapperModel(nn.Module):
    def __init__(self, image_model, language_model, classifier, args) :
        super(WrapperModel, self).__init__()
        self.image_model = image_model
        self.language_model = language_model
        self.classifier = classifier
        self.lang_proj = nn.Linear(768,256)

        config = Dict({
          "architectures": [
           "BertForMaskedLM"
          ],
          "attention_probs_dropout_prob": 0.1,
          "gradient_checkpointing": False,
          "hidden_act": "gelu",
          "hidden_dropout_prob": 0.1,
          "hidden_size": 512,
          "initializer_range": 0.02,
          "intermediate_size": 3072,
          "layer_norm_eps": 1e-12,
          #"max_position_embeddings": 16+20,
          "model_type": "bert",
          "num_attention_heads": 8,
          "num_hidden_layers": 8,
         "pad_token_id": 0,
          "position_embedding_type": "absolute",
          "transformers_version": "4.6.0.dev0",
          "type_vocab_size": 2,
          "use_cache": True,
          "vocab_size": 30522
        })
        self.mlm_transformer = BertEncoder(config)

        self.lang_proj = nn.Linear(768,256)
        self.mlm_vis_proj = nn.Conv2d(1024,512,1)
        self.mlm_lang_proj = nn.Linear(768,512)
        #print(vis_proj)
        self.mlm_head = BertLMPredictionHead(config)

        assert args.img_size % 4 == 0
        num_img_tokens = 20 + ((args.img_size // 4)//8) ** 2
        print(num_img_tokens)
        self.mlm_pos_embeds = nn.Embedding(num_img_tokens+1, 512)
        self.mlm_modal_embeds = nn.Embedding(3, 512)

        self.mlm_mask_embed = nn.Embedding(1, 512)
        self.mlm_pos_mlp = nn.Sequential(
            nn.Linear(2, 512),
            nn.LayerNorm(512),
            nn.Linear(512,512),
            nn.GELU()
        )

    def _get_binary_mask(self, target):
        # 返回每类的binary mask
        y, x = target.size()
        target_onehot = torch.zeros(self.num_classes + 1, y, x)
        target_onehot = target_onehot.scatter(dim=0, index=target.unsqueeze(0), value=1)
        return target_onehot[1:]

    def semantic_inference(self, mask_cls, mask_pred):       
        mask_cls = F.softmax(mask_cls, dim=1)[...,1:]
        mask_pred = mask_pred.sigmoid()      
        semseg = torch.einsum("bqc,bqhw->bchw", mask_cls, mask_pred)        
        return semseg

    def forward(self, image, sentences, attentions): 
        input_shape = image.shape[-2:]
        l_mask = attentions.unsqueeze(dim=-1)

        i0, Wh, Ww = self.image_model.forward_stem(image)
        l0, extended_attention_mask = self.language_model.forward_stem(sentences, attentions)

        i1 = self.image_model.forward_stage1(i0, Wh, Ww)
        l1 = self.language_model.forward_stage1(l0, extended_attention_mask)
        i1_residual, H, W, i1_temp, Wh, Ww  = self.image_model.forward_pwam1(i1, Wh, Ww, l1, l_mask)
        l1_residual, l1 = self.language_model.forward_pwam1(i1, l1, extended_attention_mask) 
        i1 = i1_temp

        i2 = self.image_model.forward_stage2(i1, Wh, Ww)
        l2 = self.language_model.forward_stage2(l1, extended_attention_mask)
        i2_residual, H, W, i2_temp, Wh, Ww  = self.image_model.forward_pwam2(i2, Wh, Ww, l2, l_mask)
        l2_residual, l2 = self.language_model.forward_pwam2(i2, l2, extended_attention_mask) 
        i2 = i2_temp

        i3 = self.image_model.forward_stage3(i2, Wh, Ww)
        l3 = self.language_model.forward_stage3(l2, extended_attention_mask)
        i3_residual, H, W, i3_temp, Wh, Ww  = self.image_model.forward_pwam3(i3, Wh, Ww, l3, l_mask)
        l3_residual, l3 = self.language_model.forward_pwam3(i3, l3, extended_attention_mask) 
        i3 = i3_temp

        i4 = self.image_model.forward_stage4(i3, Wh, Ww)
        l4 = self.language_model.forward_stage4(l3, extended_attention_mask)
        i4_residual, H, W, i4_temp, Wh, Ww  = self.image_model.forward_pwam4(i4, Wh, Ww, l4, l_mask)
        l4_residual, l4 = self.language_model.forward_pwam4(i4, l4, extended_attention_mask) 
        i4 = i4_temp

        #i1_residual, i2_residual, i3_residual, i4_residual = features
        #x = self.classifier(i4_residual, i3_residual, i2_residual, i1_residual)
        #x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
        outputs = {}
        outputs['s1'] = i1_residual
        outputs['s2'] = i2_residual
        outputs['s3'] = i3_residual
        outputs['s4'] = i4_residual

        predictions, _ = self.classifier(outputs)
        return predictions

def main(args):
#def main(local_rank, args):

    #device = torch.device(args.device)
    device = 'cuda'
    dataset_test, _ = get_dataset(args.split, get_transform(args=args), args)
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)
    data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1,
                                  sampler=test_sampler, num_workers=args.workers)
    print(args.model)
    single_model = multimodal_segmentation_ppm.__dict__[args.model](pretrained='',args=args)
    #single_model = MultiModalFocal(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], focal_windows=[9,9,9,9], drop_path_rate=0.3)
    #single_model.init_weights('./focalnet_base_lrf.pth')
    checkpoint = torch.load(args.resume, map_location='cpu')
    #single_model.load_state_dict(checkpoint['model'])
    #model = single_model.to(device)

    if args.model != 'lavt_one':
        model_class = MultiModalBert
        #single_bert_model = model_class.from_pretrained(args.ck_bert, embed_dim=128)
        single_bert_model = model_class.from_pretrained(args.ck_bert, embed_dim=single_model.backbone.embed_dim)
        # work-around for a transformers bug; need to update to a newer version of transformers to remove these two lines
        if args.ddp_trained_weights:
            single_bert_model.pooler = None
        #single_bert_model.load_state_dict(checkpoint['bert_model'])
        #bert_model = single_bert_model.to(device)
    else:
        bert_model = None

    #model = WrapperModel(single_model.backbone, single_bert_model, single_model.classifier)
    #model.load_state_dict(checkpoint['model'])
    #model.to(device)
    input_shape = dict()
    input_shape['s1'] = Dict({'channel': 128,  'stride': 4})
    input_shape['s2'] = Dict({'channel': 256,  'stride': 8})
    input_shape['s3'] = Dict({'channel': 512,  'stride': 16})
    input_shape['s4'] = Dict({'channel': 1024, 'stride': 32})



    cfg = Dict()
    cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE = 4
    cfg.MODEL.MASK_FORMER.DROPOUT = 0.0 
    cfg.MODEL.MASK_FORMER.NHEADS = 8
    cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 4
    cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM = 256
    cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
    cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["s1", "s2", "s3", "s4"]

    cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 1
    cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
    cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 1
    cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
    cfg.MODEL.MASK_FORMER.DEC_LAYERS = 10
    cfg.MODEL.MASK_FORMER.PRE_NORM = False


    maskformer_head = MaskFormerHead(cfg, input_shape)
    #maskformer_head = torch.nn.SyncBatchNorm.convert_sync_batchnorm(maskformer_head)
    #maskformer_head.cuda()
    #maskformer_head = torch.nn.parallel.DistributedDataParallel(maskformer_head, device_ids=[args.local_rank], find_unused_parameters=False)
    #single_head = maskformer_head.module
    #print(single_head)

    model = WrapperModel(single_model.backbone, single_bert_model, maskformer_head, args)
    model.load_state_dict(checkpoint['model'])
    model.to(device)
    #model.cuda()
    #model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
    #single_model = model.module
    #model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
    #single_model = model.module
    evaluate(model, data_loader_test, device=device)


if __name__ == "__main__":
    from args import get_parser
    parser = get_parser()
    args = parser.parse_args()
    print('Image size: {}'.format(str(args.img_size)))
    print(args)
    main(args)
    #mp.spawn(main, args=(args,), nprocs=torch.cuda.device_count())