elia / lib /mask_predictor.py
yxchng
add files
a166479
import torch
from torch import nn
from torch.nn import functional as F
from collections import OrderedDict
class SimpleDecoding(nn.Module):
def __init__(self, c4_dims, factor=2):
super(SimpleDecoding, self).__init__()
hidden_size = c4_dims//factor
c4_size = c4_dims
c3_size = c4_dims//(factor**1)
c2_size = c4_dims//(factor**2)
c1_size = c4_dims//(factor**3)
self.conv1_4 = nn.Conv2d(c4_size+c3_size, hidden_size, 3, padding=1, bias=False)
self.bn1_4 = nn.BatchNorm2d(hidden_size)
self.relu1_4 = nn.ReLU()
self.conv2_4 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
self.bn2_4 = nn.BatchNorm2d(hidden_size)
self.relu2_4 = nn.ReLU()
self.conv1_3 = nn.Conv2d(hidden_size + c2_size, hidden_size, 3, padding=1, bias=False)
self.bn1_3 = nn.BatchNorm2d(hidden_size)
self.relu1_3 = nn.ReLU()
self.conv2_3 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
self.bn2_3 = nn.BatchNorm2d(hidden_size)
self.relu2_3 = nn.ReLU()
self.conv1_2 = nn.Conv2d(hidden_size + c1_size, hidden_size, 3, padding=1, bias=False)
self.bn1_2 = nn.BatchNorm2d(hidden_size)
self.relu1_2 = nn.ReLU()
self.conv2_2 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
self.bn2_2 = nn.BatchNorm2d(hidden_size)
self.relu2_2 = nn.ReLU()
self.conv1_1 = nn.Conv2d(hidden_size, 2, 1)
def forward(self, x_c4, x_c3, x_c2, x_c1):
# fuse Y4 and Y3
if x_c4.size(-2) < x_c3.size(-2) or x_c4.size(-1) < x_c3.size(-1):
x_c4 = F.interpolate(input=x_c4, size=(x_c3.size(-2), x_c3.size(-1)), mode='bilinear', align_corners=True)
x = torch.cat([x_c4, x_c3], dim=1)
x = self.conv1_4(x)
x = self.bn1_4(x)
x = self.relu1_4(x)
x = self.conv2_4(x)
x = self.bn2_4(x)
x = self.relu2_4(x)
# fuse top-down features and Y2 features
if x.size(-2) < x_c2.size(-2) or x.size(-1) < x_c2.size(-1):
x = F.interpolate(input=x, size=(x_c2.size(-2), x_c2.size(-1)), mode='bilinear', align_corners=True)
x = torch.cat([x, x_c2], dim=1)
x = self.conv1_3(x)
x = self.bn1_3(x)
x = self.relu1_3(x)
x = self.conv2_3(x)
x = self.bn2_3(x)
x = self.relu2_3(x)
# fuse top-down features and Y1 features
if x.size(-2) < x_c1.size(-2) or x.size(-1) < x_c1.size(-1):
x = F.interpolate(input=x, size=(x_c1.size(-2), x_c1.size(-1)), mode='bilinear', align_corners=True)
x = torch.cat([x, x_c1], dim=1)
x = self.conv1_2(x)
x = self.bn1_2(x)
x = self.relu1_2(x)
x = self.conv2_2(x)
x = self.bn2_2(x)
x = self.relu2_2(x)
return self.conv1_1(x)