Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
from nltk.tokenize import RegexpTokenizer | |
from nltk.stem import WordNetLemmatizer | |
from nltk.corpus import stopwords | |
from sklearn.feature_extraction.text import CountVectorizer | |
from sklearn.model_selection import train_test_split | |
import re | |
import pickle | |
# lemmatizing | |
def lemmatize_join(text): | |
tokenizer = RegexpTokenizer('[a-z]+', gaps=False) # instantiate tokenizer | |
lemmer = WordNetLemmatizer() # instantiate lemmatizer | |
return ' '.join([lemmer.lemmatize(w) for w in tokenizer.tokenize(text.lower())]) | |
# lowercase, join back together with spaces so that word vectorizers can still operate | |
# on cell contents as strings | |
def predict(new_data): | |
# lemmatize new data | |
Z_data = new_data.apply(lemmatize_join) | |
# countvectorize new data | |
# import dataset 'full_post' that has been lemmatized | |
url = 'https://huggingface.co/spaces/yxmauw/subreddit-clf-app/raw/main/tts.csv' | |
df = pd.read_csv(url, header=0) | |
# train-test-split | |
X = df['full_post'] # pd.series because dataframe format not friendly for word vectorization | |
y = df['subreddit'] | |
# make sure target variable has equal representation on both train and test sets | |
X_train, X_test, y_train, y_test = train_test_split(X, y, | |
test_size=.2, | |
stratify=y, | |
random_state=42) | |
cvec = CountVectorizer() | |
Z_train = X_train.apply(lemmatize_join) # lemmatize training data | |
cvec.fit(Z_train) # fit on lemmatized training data set | |
cvec.transform(Z_data) # transform new data | |
with open('final_model.sav','rb') as f: | |
model = pickle.load(f) | |
pred = model.predict(Z_data) | |
return pred | |