Spaces:
Runtime error
Runtime error
File size: 6,626 Bytes
9cfda96 bd930f4 9cfda96 bd930f4 fe298bb 9cfda96 fe298bb 9cfda96 bd930f4 9cfda96 bd930f4 9cfda96 fe298bb 9cfda96 680e883 9cfda96 b274260 680e883 c528095 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import streamlit as st
import streamlit.components.v1 as components
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from torchvision.transforms import ToTensor, Resize
import numpy as np
from PIL import Image
import math
from obj2html import obj2html
import os
# DEPTH IMAGE TO OBJ
minDepth=10
maxDepth=1000
def my_DepthNorm(x, maxDepth):
return maxDepth / x
def vete(v, vt):
if v == vt:
return str(v)
return str(v)+"/"+str(vt)
def create_obj(img, objPath='model.obj', mtlPath='model.mtl', matName='colored', useMaterial=False):
w = img.shape[1]
h = img.shape[0]
FOV = math.pi/4
D = (img.shape[0]/2)/math.tan(FOV/2)
if max(objPath.find('\\'), objPath.find('/')) > -1:
os.makedirs(os.path.dirname(mtlPath), exist_ok=True)
with open(objPath, "w") as f:
if useMaterial:
f.write("mtllib " + mtlPath + "\n")
f.write("usemtl " + matName + "\n")
ids = np.zeros((img.shape[1], img.shape[0]), int)
vid = 1
all_x = []
all_y = []
all_z = []
for u in range(0, w):
for v in range(h-1, -1, -1):
d = img[v, u]
ids[u, v] = vid
if d == 0.0:
ids[u, v] = 0
vid += 1
x = u - w/2
y = v - h/2
z = -D
norm = 1 / math.sqrt(x*x + y*y + z*z)
t = d/(z*norm)
x = -t*x*norm
y = t*y*norm
z = -t*z*norm
f.write("v " + str(x) + " " + str(y) + " " + str(z) + "\n")
for u in range(0, img.shape[1]):
for v in range(0, img.shape[0]):
f.write("vt " + str(u/img.shape[1]) +
" " + str(v/img.shape[0]) + "\n")
for u in range(0, img.shape[1]-1):
for v in range(0, img.shape[0]-1):
v1 = ids[u, v]
v3 = ids[u+1, v]
v2 = ids[u, v+1]
v4 = ids[u+1, v+1]
if v1 == 0 or v2 == 0 or v3 == 0 or v4 == 0:
continue
f.write("f " + vete(v1, v1) + " " +
vete(v2, v2) + " " + vete(v3, v3) + "\n")
f.write("f " + vete(v3, v3) + " " +
vete(v2, v2) + " " + vete(v4, v4) + "\n")
# MODEL
class UpSample(nn.Sequential):
def __init__(self, skip_input, output_features):
super(UpSample, self).__init__()
self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1)
self.leakyreluA = nn.LeakyReLU(0.2)
self.convB = nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1)
self.leakyreluB = nn.LeakyReLU(0.2)
def forward(self, x, concat_with):
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
return self.leakyreluB( self.convB( self.convA( torch.cat([up_x, concat_with], dim=1) ) ) )
class Decoder(nn.Module):
def __init__(self, num_features=1664, decoder_width = 1.0):
super(Decoder, self).__init__()
features = int(num_features * decoder_width)
self.conv2 = nn.Conv2d(num_features, features, kernel_size=1, stride=1, padding=0)
self.up1 = UpSample(skip_input=features//1 + 256, output_features=features//2)
self.up2 = UpSample(skip_input=features//2 + 128, output_features=features//4)
self.up3 = UpSample(skip_input=features//4 + 64, output_features=features//8)
self.up4 = UpSample(skip_input=features//8 + 64, output_features=features//16)
self.conv3 = nn.Conv2d(features//16, 1, kernel_size=3, stride=1, padding=1)
def forward(self, features):
x_block0, x_block1, x_block2, x_block3, x_block4 = features[3], features[4], features[6], features[8], features[12]
x_d0 = self.conv2(F.relu(x_block4))
x_d1 = self.up1(x_d0, x_block3)
x_d2 = self.up2(x_d1, x_block2)
x_d3 = self.up3(x_d2, x_block1)
x_d4 = self.up4(x_d3, x_block0)
return self.conv3(x_d4)
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.original_model = models.densenet169( pretrained=False )
def forward(self, x):
features = [x]
for k, v in self.original_model.features._modules.items(): features.append( v(features[-1]) )
return features
class PTModel(nn.Module):
def __init__(self):
super(PTModel, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, x):
return self.decoder( self.encoder(x) )
model = PTModel().float()
path = "https://github.com/nicolalandro/DenseDepth/releases/download/0.1/nyu.pth"
model.load_state_dict(torch.hub.load_state_dict_from_url(path, progress=True))
model.eval()
def predict(inp):
width, height = inp.size
if width > height:
scale_fn = Resize((640, int((640*width)/height)))
else:
scale_fn = Resize((int((640*height)/width), 640))
res_img = scale_fn(inp)
torch_image = ToTensor()(res_img)
images = torch_image.unsqueeze(0)
with torch.no_grad():
predictions = model(images)
output = np.clip(my_DepthNorm(predictions.numpy(), maxDepth=maxDepth), minDepth, maxDepth) / maxDepth
depth = output[0,0,:,:]
img = Image.fromarray(np.uint8(depth*255))
create_obj(depth, 'model.obj')
html_string = obj2html('model.obj', html_elements_only=True)
return res_img, img, html_string
# STREAMLIT
uploader = st.file_uploader('Wait the demo file to be rendered and upload your favourite image here.',type=['jpg','jpeg','png'])
if uploader is not None:
pil_image = Image.open(uploader)
else:
pil_image = Image.open('119_image.png')
with st.spinner("Waiting for the predictions..."):
pil_scaled, pil_depth, html_string = predict(pil_image)
components.html(html_string)
#st.markdown(html_string, unsafe_allow_html=True)
col1, col2, col3 = st.columns(3)
with col1:
st.image(pil_scaled)
with col2:
st.image(pil_depth)
with col3:
with open('model.obj') as f:
st.download_button('Download model.obj', f, file_name="model.obj")
os.remove('model.obj')
pil_depth.save('tmp.png')
with open('tmp.png', "rb") as f:
st.download_button('Download depth.png', f,file_name="depth.png", mime="image/png")
os.remove('tmp.png')
|