z-uo's picture
remove file after download button creation and scale image input
bd930f4
raw
history blame
6.47 kB
import streamlit as st
import streamlit.components.v1 as components
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from torchvision.transforms import ToTensor, Resize
import numpy as np
from PIL import Image
import math
from obj2html import obj2html
import os
# DEPTH IMAGE TO OBJ
minDepth=10
maxDepth=1000
def my_DepthNorm(x, maxDepth):
return maxDepth / x
def vete(v, vt):
if v == vt:
return str(v)
return str(v)+"/"+str(vt)
def create_obj(img, objPath='model.obj', mtlPath='model.mtl', matName='colored', useMaterial=False):
w = img.shape[1]
h = img.shape[0]
FOV = math.pi/4
D = (img.shape[0]/2)/math.tan(FOV/2)
if max(objPath.find('\\'), objPath.find('/')) > -1:
os.makedirs(os.path.dirname(mtlPath), exist_ok=True)
with open(objPath, "w") as f:
if useMaterial:
f.write("mtllib " + mtlPath + "\n")
f.write("usemtl " + matName + "\n")
ids = np.zeros((img.shape[1], img.shape[0]), int)
vid = 1
all_x = []
all_y = []
all_z = []
for u in range(0, w):
for v in range(h-1, -1, -1):
d = img[v, u]
ids[u, v] = vid
if d == 0.0:
ids[u, v] = 0
vid += 1
x = u - w/2
y = v - h/2
z = -D
norm = 1 / math.sqrt(x*x + y*y + z*z)
t = d/(z*norm)
x = -t*x*norm
y = t*y*norm
z = -t*z*norm
f.write("v " + str(x) + " " + str(y) + " " + str(z) + "\n")
for u in range(0, img.shape[1]):
for v in range(0, img.shape[0]):
f.write("vt " + str(u/img.shape[1]) +
" " + str(v/img.shape[0]) + "\n")
for u in range(0, img.shape[1]-1):
for v in range(0, img.shape[0]-1):
v1 = ids[u, v]
v3 = ids[u+1, v]
v2 = ids[u, v+1]
v4 = ids[u+1, v+1]
if v1 == 0 or v2 == 0 or v3 == 0 or v4 == 0:
continue
f.write("f " + vete(v1, v1) + " " +
vete(v2, v2) + " " + vete(v3, v3) + "\n")
f.write("f " + vete(v3, v3) + " " +
vete(v2, v2) + " " + vete(v4, v4) + "\n")
# MODEL
class UpSample(nn.Sequential):
def __init__(self, skip_input, output_features):
super(UpSample, self).__init__()
self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1)
self.leakyreluA = nn.LeakyReLU(0.2)
self.convB = nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1)
self.leakyreluB = nn.LeakyReLU(0.2)
def forward(self, x, concat_with):
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
return self.leakyreluB( self.convB( self.convA( torch.cat([up_x, concat_with], dim=1) ) ) )
class Decoder(nn.Module):
def __init__(self, num_features=1664, decoder_width = 1.0):
super(Decoder, self).__init__()
features = int(num_features * decoder_width)
self.conv2 = nn.Conv2d(num_features, features, kernel_size=1, stride=1, padding=0)
self.up1 = UpSample(skip_input=features//1 + 256, output_features=features//2)
self.up2 = UpSample(skip_input=features//2 + 128, output_features=features//4)
self.up3 = UpSample(skip_input=features//4 + 64, output_features=features//8)
self.up4 = UpSample(skip_input=features//8 + 64, output_features=features//16)
self.conv3 = nn.Conv2d(features//16, 1, kernel_size=3, stride=1, padding=1)
def forward(self, features):
x_block0, x_block1, x_block2, x_block3, x_block4 = features[3], features[4], features[6], features[8], features[12]
x_d0 = self.conv2(F.relu(x_block4))
x_d1 = self.up1(x_d0, x_block3)
x_d2 = self.up2(x_d1, x_block2)
x_d3 = self.up3(x_d2, x_block1)
x_d4 = self.up4(x_d3, x_block0)
return self.conv3(x_d4)
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.original_model = models.densenet169( pretrained=False )
def forward(self, x):
features = [x]
for k, v in self.original_model.features._modules.items(): features.append( v(features[-1]) )
return features
class PTModel(nn.Module):
def __init__(self):
super(PTModel, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, x):
return self.decoder( self.encoder(x) )
model = PTModel().float()
path = "https://github.com/nicolalandro/DenseDepth/releases/download/0.1/nyu.pth"
model.load_state_dict(torch.hub.load_state_dict_from_url(path, progress=True))
model.eval()
def predict(inp):
width, height = inp.size
if width > height:
scale_fn = Resize((640, int((640*width)/height)))
else:
scale_fn = Resize((int((640*height)/width), 640))
res_img = scale_fn(inp)
torch_image = ToTensor()(res_img)
images = torch_image.unsqueeze(0)
with torch.no_grad():
predictions = model(images)
output = np.clip(my_DepthNorm(predictions.numpy(), maxDepth=maxDepth), minDepth, maxDepth) / maxDepth
depth = output[0,0,:,:]
img = Image.fromarray(np.uint8(depth*255))
create_obj(depth, 'model.obj')
html_string = obj2html('model.obj', html_elements_only=True)
return res_img, img, html_string
# STREAMLIT
uploader = st.file_uploader('Upload your portrait here',type=['jpg','jpeg','png'])
if uploader is not None:
pil_image = Image.open(uploader)
pil_scaled, pil_depth, html_string = predict(pil_image)
components.html(html_string)
#st.markdown(html_string, unsafe_allow_html=True)
col1, col2, col3 = st.columns(3)
with col1:
st.image(pil_scaled)
with col2:
st.image(pil_depth)
with col3:
with open('model.obj') as f:
st.download_button('Download model.obj', f, file_name="model.obj")
os.remove('model.obj')
pil_depth.save('tmp.png')
with open('tmp.png', "rb") as f:
st.download_button('Download depth.png', f,file_name="depth.png", mime="image/png")
os.remove('tmp.png')