import lancedb import os import gradio as gr from sentence_transformers import SentenceTransformer db = lancedb.connect(".lancedb") #TABLE = db.open_table(os.getenv("TABLE_NAME")) VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) #retriever = SentenceTransformer(os.getenv("EMB_MODEL")) def retrieve(query, k, table_name, embedding_model_name): #print(table_name) #print(emb_name) TABLE = db.open_table(table_name) retriever = SentenceTransformer(embedding_model_name) query_vec = retriever.encode(query) try: documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list() documents = [doc[TEXT_COLUMN] for doc in documents] return documents except Exception as e: raise gr.Error(str(e))