File size: 18,969 Bytes
3d845fb 13fb76e 3d845fb f5aa6c7 13fb76e f5aa6c7 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb f5aa6c7 3d845fb 13fb76e 3d845fb f5aa6c7 13fb76e f5aa6c7 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb 13fb76e 3d845fb f5aa6c7 13fb76e 3d845fb 13fb76e 3d845fb f5aa6c7 13fb76e 3d845fb 13fb76e e0195cb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e f5aa6c7 3d845fb 13fb76e 3d845fb 13fb76e 3d845fb 13fb76e f5aa6c7 5062baf f5aa6c7 13fb76e f5aa6c7 13fb76e 3d845fb f5aa6c7 3d845fb f5aa6c7 3d845fb 13fb76e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import os
import shutil
import subprocess
import time
from pathlib import Path
from typing import List, Tuple, Union
import gradio as gr
import numpy as np
import pandas as pd
import requests
from preprocessing import pretty_print
from symptoms_categories import SYMPTOMS_LIST
from concrete.ml.common.serialization.loaders import load
from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier
INPUT_BROWSER_LIMIT = 635
SERVER_URL = "http://localhost:8000/"
# This repository's main necessary folders
REPO_DIR = Path(__file__).parent
MODEL_PATH = REPO_DIR / "client_folder"
KEYS_PATH = REPO_DIR / ".fhe_keys"
CLIENT_TMP_PATH = REPO_DIR / "client_tmp"
SERVER_TMP_PATH = REPO_DIR / "server_tmp"
# Create the necessary folders
KEYS_PATH.mkdir(exist_ok=True)
CLIENT_TMP_PATH.mkdir(exist_ok=True)
SERVER_TMP_PATH.mkdir(exist_ok=True)
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
time.sleep(3)
def clean_directory():
target_dir = ".fhe_keys"
if os.path.exists(target_dir) and os.path.isdir(target_dir):
shutil.rmtree(target_dir)
print("The .fhe_keys directory and its contents have been successfully removed.")
else:
print("The .keys directory does not exist.")
def load_data():
# Load data
df_train = pd.read_csv("./data/Training_preprocessed.csv")
df_test = pd.read_csv("./data/Testing_preprocessed.csv")
# Separate the traget from the training set
# df['prognosis] contains the name of the disease
# df['y] contains the numeric label of the disease
y_train = df_train["y"]
X_train = df_train.drop(columns=["y", "prognosis"], axis=1, errors="ignore")
y_test = df_train["y"]
X_test = df_test.drop(columns=["y", "prognosis"], axis=1, errors="ignore")
return (df_train, X_train, X_test), (df_test, y_train, y_test)
def load_model(X_train, y_train):
concrete_args = {"max_depth": 1, "n_bits": 3, "n_estimators": 3, "n_jobs": -1}
classifier = ConcreteXGBoostClassifier(**concrete_args)
classifier.fit(X_train, y_train)
circuit = classifier.compile(X_train)
return classifier, circuit
def get_user_vect_symptoms_from_checkboxgroup(*user_symptoms) -> np.array:
symptoms_vector = {key: 0 for key in VALID_COLUMNS}
for symptom_box in user_symptoms:
for pretty_symptom in symptom_box:
symptom = "_".join((pretty_symptom.lower().split(" ")))
if symptom not in symptoms_vector.keys():
raise KeyError(
f"The symptom '{symptom}' you provided is not recognized as a valid "
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}"
)
symptoms_vector[symptom] = 1.0
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :]
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
return user_symptoms_vect
def get_user_vector_from_default_disease(disease):
user_symptom_vector = df_test[df_test["prognosis"] == disease].iloc[0].values
user_symptoms_vect = np.fromiter(user_symptom_vector[:-2], dtype=float)[np.newaxis, :]
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
return user_symptoms_vect
def get_user_symptoms_from_default_disease(disease):
df_filtred = df_test[df_test["prognosis"] == disease]
columns_with_1 = df_filtred.columns[df_filtred.eq(1).any()].to_list()
return pretty_print(columns_with_1)
def get_user_symptoms_vector_fn(selected_default_disease, *selected_symptoms):
# Display an error box, if:
# 1. The user has already selected a default disease and added more symptoms, or
# 2. The the user has not selected a default disease or symptoms
if (
any(lst for lst in selected_symptoms if lst)
and (selected_default_disease is not None and len(selected_default_disease) > 0)
and set(pretty_print(selected_symptoms))
- set(get_user_symptoms_from_default_disease(selected_default_disease))
) or (
not any(lst for lst in selected_symptoms if lst)
and (
selected_default_disease is None
or (selected_default_disease is not None and len(selected_default_disease) < 1)
)
):
return {
error_box_1: gr.update(
visible=True, value="Enter a default disease or select your own symptoms"
),
}
# Case 1: The user has checked his own symptoms
if any(lst for lst in selected_symptoms if lst):
return {
error_box_1: gr.update(visible=False),
user_vector_textbox: get_user_vect_symptoms_from_checkboxgroup(*selected_symptoms),
}
# Case 2: The user has selected a default disease
if selected_default_disease is not None and len(selected_default_disease) > 0:
return {
user_vector_textbox: get_user_vector_from_default_disease(selected_default_disease),
error_box_1: gr.update(visible=False),
**{
box: get_user_symptoms_from_default_disease(selected_default_disease)
for box in check_boxes
},
}
def key_gen_fn(user_symptoms):
print("Cleaning directory ...")
clean_directory()
if user_symptoms is None or (user_symptoms is not None and len(user_symptoms) < 1):
print("Please submit your symptoms first")
return {
error_box_2: gr.update(visible=True, value="Please submit your symptoms first"),
}
# Key serialization
user_id = np.random.randint(0, 2**32)
client = FHEModelClient(path_dir=MODEL_PATH, key_dir=KEYS_PATH / f"{user_id}")
client.load()
# The client first need to create the private and evaluation keys.
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
# np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys)
evaluation_key_path = KEYS_PATH / f"{user_id}/evaluation_key"
with evaluation_key_path.open("wb") as f:
f.write(serialized_evaluation_keys)
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]
return {
error_box_2: gr.update(visible=False),
eval_key_textbox: serialized_evaluation_keys_shorten_hex,
user_id_textbox: user_id,
eval_key_len_textbox: f"{len(serialized_evaluation_keys) / (10**6):.2f} MB",
}
def encrypt_fn(user_symptoms, user_id):
if not user_symptoms or not user_symptoms:
return {
error_box_3: gr.update(
visible=True, value="Please ensure that the evaluation key has been generated!"
)
}
# Retrieve the client API
client = FHEModelClient(path_dir=MODEL_PATH, key_dir=KEYS_PATH / f"{user_id}")
client.load()
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1)
quant_user_symptoms = client.model.quantize_input(user_symptoms)
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
assert isinstance(encrypted_quantized_user_symptoms, bytes)
encrypted_input_path = KEYS_PATH / f"{user_id}/encrypted_symptoms"
with encrypted_input_path.open("wb") as f:
f.write(encrypted_quantized_user_symptoms)
# print(client.model.predict(vect_x, fhe="simulate"), client.model.predict(vect_x, fhe="execute"))
# pred_s = client.model.fhe_circuit.simulate(quant_vect)
# pred_fhe = client.model.fhe_circuit.encrypt_run_decrypt(quant_vect) #
# non alpha -> \X1124, base64 ou en exa
# Compute size
# np.save(f".fhe_keys/{user_id}/encrypted_quant_vect.npy", encrypted_quantized_user_symptoms)
encrypted_quantized_user_symptoms_shorten_hex = encrypted_quantized_user_symptoms.hex()[
:INPUT_BROWSER_LIMIT
]
return {
error_box_3: gr.update(visible=False),
vect_textbox: user_symptoms,
quant_vect_textbox: quant_user_symptoms,
encrypted_vect_textbox: encrypted_quantized_user_symptoms_shorten_hex,
}
def is_nan(input):
return input is None or (input is not None and len(input) < 1)
def send_input_fn(user_id, user_symptoms):
"""Send the encrypted input image as well as the evaluation key to the server.
Args:
user_id (int): The current user's ID.
filter_name (str): The current filter to consider.
"""
# Get the evaluation key path
if is_nan(user_id) or is_nan(user_symptoms):
return {
error_box_4: gr.update(
visible=True,
value="Please ensure that the evaluation key has been generated "
"and the symptoms have been submitted before sending the data to the server",
)
}
evaluation_key_path = KEYS_PATH / f"{user_id}/evaluation_key"
encrypted_input_path = KEYS_PATH / f"{user_id}/encrypted_symptoms"
if not evaluation_key_path.is_file():
print(f"Please generate the private key, first.{evaluation_key_path.is_file()=}")
return {
error_box_4: gr.update(visible=True, value="Please generate the private key first.")
}
if not encrypted_input_path.is_file():
print(f"Please submit your symptoms, first.{encrypted_input_path.is_file()=}")
return {
error_box_4: gr.update(
visible=True,
value="Please generate the private key and then encrypt an image first.",
)
}
# Define the data and files to post
data = {
"user_id": user_id,
"filter": user_symptoms,
}
files = [
("files", open(encrypted_input_path, "rb")),
("files", open(evaluation_key_path, "rb")),
]
# Send the encrypted input image and evaluation key to the server
url = SERVER_URL + "send_input"
with requests.post(
url=url,
data=data,
files=files,
) as response:
print(f"response.ok: {response.ok}")
return {error_box_4: gr.update(visible=False), server_response_box: gr.update(visible=True)}
# def decrypt_prediction(encrypted_quantized_vect, user_id):
# fhe_api = FHEModelClient(path_dir=REPO_DIR, key_dir=f".fhe_keys/{user_id}")
# fhe_api.load()
# fhe_api.generate_private_and_evaluation_keys(force=False)
# predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_quantized_vect)
# return predictions
def clear_all_btn():
clean_directory()
return {
box_default: None,
vect_textbox: None,
user_id_textbox: None,
eval_key_textbox: None,
quant_vect_textbox: None,
user_vector_textbox: None,
eval_key_len_textbox: None,
encrypted_vect_textbox: None,
error_box_1: gr.update(visible=False),
error_box_2: gr.update(visible=False),
error_box_3: gr.update(visible=False),
error_box_4: gr.update(visible=False),
server_response_box: gr.update(visible=False),
**{box: None for box in check_boxes},
}
if __name__ == "__main__":
print("Starting demo ...")
(df_train, X_train, X_test), (df_test, y_train, y_test) = load_data()
VALID_COLUMNS = X_train.columns.to_list()
# Load the model
with open("ConcreteXGBoostClassifier.pkl", "r", encoding="utf-8") as file:
concrete_classifier = load(file)
with gr.Blocks() as demo:
# Link + images
gr.Markdown(
"""
<p align="center">
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
</p>
<h2 align="center">Health Prediction On Encrypted Data Using Homomorphic Encryption.</h2>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
—
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
—
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>
—
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
</p>
<p align="center">
<img src="https://raw.githubusercontent.com/kcelia/Img/main/demo-img2.png" width="60%" height="60%">
</p>
"""
)
# Gentle introduction
gr.Markdown("## Introduction")
gr.Markdown("""Blablabla""")
# User symptoms
gr.Markdown("# Step 1: Provide your symptoms")
gr.Markdown("Client side")
# Default disease, picked from the dataframe
with gr.Row():
default_diseases = list(set(df_test["prognosis"]))
box_default = gr.Dropdown(default_diseases, label="Disease")
# Box symptoms
check_boxes = []
for i, category in enumerate(SYMPTOMS_LIST):
check_box = gr.CheckboxGroup(
pretty_print(category.values()),
label=pretty_print(category.keys()),
info=f"Symptoms related to `{pretty_print(category.values())}`",
max_batch_size=45,
)
check_boxes.append(check_box)
error_box_1 = gr.Textbox(label="Error", visible=False)
# User symptom vector
with gr.Row():
user_vector_textbox = gr.Textbox(
label="User symptoms (vector)",
interactive=False,
max_lines=100,
)
with gr.Row():
# Submit botton
with gr.Column():
submit_button = gr.Button("Submit")
# Clear botton
with gr.Column():
clear_button = gr.Button("Clear")
# Click submit botton
submit_button.click(
fn=get_user_symptoms_vector_fn,
inputs=[box_default, *check_boxes],
outputs=[user_vector_textbox, error_box_1, *check_boxes],
)
gr.Markdown("# Step 2: Generate the keys")
gr.Markdown("Client side")
gen_key_btn = gr.Button("Generate the keys and send public part to server")
error_box_2 = gr.Textbox(label="Error", visible=False)
with gr.Row():
# User ID
with gr.Column(scale=1, min_width=600):
user_id_textbox = gr.Textbox(
label="User ID:",
max_lines=4,
interactive=False,
)
# Evaluation key size
with gr.Column(scale=1, min_width=600):
eval_key_len_textbox = gr.Textbox(
label="Evaluation key size:", max_lines=4, interactive=False
)
with gr.Row():
# Evaluation key (truncated)
with gr.Column(scale=2, min_width=600):
eval_key_textbox = gr.Textbox(
label="Evaluation key (truncated):",
max_lines=4,
interactive=False,
)
gen_key_btn.click(
key_gen_fn,
inputs=user_vector_textbox,
outputs=[eval_key_textbox, user_id_textbox, eval_key_len_textbox, error_box_2],
)
gr.Markdown("# Step 3: Encode the message with the private key")
gr.Markdown("Client side")
encrypt_btn = gr.Button("Encode the message with the private key")
error_box_3 = gr.Textbox(label="Error", visible=False)
with gr.Row():
with gr.Column(scale=1, min_width=600):
vect_textbox = gr.Textbox(
label="Vector:",
max_lines=4,
interactive=False,
)
with gr.Column(scale=1, min_width=600):
quant_vect_textbox = gr.Textbox(
label="Quant vector:", max_lines=4, interactive=False
)
with gr.Column(scale=1, min_width=600):
encrypted_vect_textbox = gr.Textbox(
label="Encrypted vector:", max_lines=4, interactive=False
)
encrypt_btn.click(
encrypt_fn,
inputs=[user_vector_textbox, user_id_textbox],
outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox, error_box_3],
)
gr.Markdown("# Step 4: Send the encrypted data to the server.")
gr.Markdown("Client side")
send_input_btn = gr.Button("Send the encrypted data to the server.")
error_box_4 = gr.Textbox(label="Error", visible=False)
server_response_box = gr.Textbox(value="Data sent", visible=False, show_label=False)
send_input_btn.click(
send_input_fn,
inputs=[user_id_textbox, user_vector_textbox],
outputs=[error_box_4, server_response_box],
)
gr.Markdown("# Step 5: Run the FHE evaluation")
gr.Markdown("Server side")
run_fhe = gr.Button("Run the FHE evaluation")
gr.Markdown("# Step 6: Decrypt the sentiment")
gr.Markdown("Server side")
decrypt_target_botton = gr.Button("Decrypt the sentiment")
decrypt_target_textbox = gr.Textbox(
label="Encrypted vector:", max_lines=4, interactive=False
)
# decrypt_target_botton.click(
# decrypt_prediction,
# inputs=[encrypted_vect_textbox, user_id_textbox],
# outputs=[decrypt_target_textbox],
# )
clear_button.click(
clear_all_btn,
outputs=[
box_default,
error_box_1,
error_box_2,
error_box_3,
error_box_4,
vect_textbox,
user_id_textbox,
eval_key_textbox,
quant_vect_textbox,
user_vector_textbox,
server_response_box,
eval_key_len_textbox,
encrypted_vect_textbox,
*check_boxes,
],
)
demo.launch()
|