File size: 27,713 Bytes
3d845fb
f5aa6c7
9b80a97
13fb76e
7681953
13fb76e
7681953
f5aa6c7
3d845fb
49a1dd4
58df7f1
be82820
 
58df7f1
 
 
7681953
 
58df7f1
 
 
 
 
 
 
 
 
f5aa6c7
13fb76e
9b80a97
 
 
4fdac74
9b80a97
4fdac74
9b80a97
 
4fdac74
9b80a97
 
4fdac74
9b80a97
7681953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fb76e
 
9b80a97
 
 
 
 
4fdac74
9b80a97
 
 
 
 
 
 
 
4fdac74
58df7f1
 
 
 
 
 
 
 
13fb76e
 
 
 
 
 
 
 
9b80a97
 
 
13fb76e
9b80a97
 
3d845fb
9b80a97
 
 
58df7f1
13fb76e
7681953
13fb76e
 
dd11b8e
 
 
7681953
ac6aca8
dd11b8e
 
58df7f1
 
ac6aca8
bae49a6
 
7681953
af10795
58df7f1
 
 
 
 
 
13fb76e
58df7f1
 
13fb76e
58df7f1
 
3d845fb
58df7f1
3d845fb
 
4fdac74
58df7f1
3d845fb
7681953
3d845fb
 
58df7f1
3d845fb
58df7f1
3d845fb
58df7f1
3d845fb
 
58df7f1
3d845fb
 
 
 
 
 
58df7f1
 
f5aa6c7
 
3d845fb
e3e1dc8
3d845fb
 
58df7f1
7681953
 
 
 
 
3d845fb
 
 
9b80a97
 
 
 
 
 
 
 
3d845fb
4fdac74
58df7f1
3d845fb
58df7f1
7681953
 
 
3d845fb
 
 
 
58df7f1
3d845fb
 
 
55e9231
58df7f1
3d845fb
f5aa6c7
4fdac74
3d845fb
 
 
 
 
 
 
 
 
58df7f1
ac6aca8
7681953
3d845fb
 
 
9b80a97
58df7f1
f5aa6c7
 
4fdac74
 
f5aa6c7
 
4fdac74
f5aa6c7
58df7f1
f5aa6c7
7681953
 
 
f5aa6c7
 
3d845fb
58df7f1
4fdac74
3d845fb
f5aa6c7
58df7f1
 
 
 
3d845fb
7681953
 
 
3d845fb
f5aa6c7
58df7f1
 
 
 
f5aa6c7
58df7f1
f5aa6c7
7681953
58df7f1
f5aa6c7
3d845fb
f5aa6c7
 
 
4fdac74
f5aa6c7
3d845fb
f5aa6c7
 
 
 
3d845fb
9b80a97
f5aa6c7
 
 
 
 
 
58df7f1
4fdac74
 
 
 
3d845fb
 
9b80a97
4fdac74
3d845fb
58df7f1
 
 
4fdac74
58df7f1
 
 
7681953
 
 
 
 
 
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
4fdac74
 
 
7681953
4fdac74
 
 
7681953
58df7f1
 
7681953
58df7f1
 
 
 
7681953
58df7f1
 
 
9b80a97
 
 
 
4fdac74
 
9b80a97
 
4fdac74
58df7f1
 
 
7681953
 
58df7f1
 
 
 
 
 
 
9b80a97
58df7f1
 
 
 
 
 
 
be82820
58df7f1
 
 
 
 
 
 
 
 
 
 
bae49a6
 
 
9b80a97
 
 
4fdac74
 
7681953
e3e1dc8
9b80a97
 
 
 
4fdac74
58df7f1
 
 
7681953
 
58df7f1
 
 
 
 
 
 
 
 
 
 
7681953
 
 
 
 
 
 
ac6aca8
58df7f1
 
 
 
 
 
 
 
 
4fdac74
58df7f1
 
 
7681953
 
 
 
 
 
 
 
bae49a6
 
7681953
bae49a6
7681953
 
bae49a6
 
 
7681953
 
 
 
dd11b8e
58df7f1
 
ac6aca8
af10795
58df7f1
3d845fb
 
49a1dd4
4fdac74
3d845fb
f5aa6c7
3d845fb
13fb76e
ac6aca8
af10795
64580eb
ac6aca8
7681953
 
64580eb
 
 
 
 
ac6aca8
58df7f1
 
 
 
 
 
 
 
 
13fb76e
 
 
 
 
9b80a97
13fb76e
e3e1dc8
58df7f1
13fb76e
7681953
e0195cb
e99f0b7
13fb76e
 
 
 
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55e9231
58df7f1
 
13fb76e
f45d8a5
7681953
f45d8a5
 
 
 
7681953
 
d7db146
64580eb
f782fe6
 
d7db146
5ed335c
d7db146
af10795
d7db146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83ba08
d7db146
 
 
f83ba08
d7db146
64580eb
af10795
ac6aca8
f83ba08
af10795
f83ba08
af10795
 
 
 
 
 
 
 
ac6aca8
af10795
dd11b8e
d7db146
64580eb
d7db146
f782fe6
d7db146
af10795
d7db146
af10795
d7db146
 
 
 
13fb76e
55e9231
d7db146
af10795
 
 
 
 
 
ac6aca8
af10795
 
 
 
 
 
d7db146
13fb76e
af10795
d7db146
55e9231
d7db146
af10795
3d845fb
d7db146
 
ac6aca8
d7db146
af10795
13fb76e
d7db146
 
ac6aca8
d7db146
ac6aca8
d7db146
 
 
 
af10795
d7db146
af10795
d7db146
 
 
 
 
5ed335c
d7db146
af10795
13fb76e
d7db146
 
ac6aca8
d7db146
 
9c8c3ed
d7db146
64580eb
d7db146
f782fe6
d7db146
 
 
64580eb
d7db146
f5aa6c7
55e9231
d7db146
ac6aca8
d7db146
 
 
 
 
13fb76e
d7db146
64580eb
d7db146
f782fe6
d7db146
5ed335c
d7db146
 
13fb76e
ac6aca8
d7db146
 
55e9231
d7db146
64580eb
d7db146
 
 
ac6aca8
d7db146
 
 
ac6aca8
d7db146
ac6aca8
d7db146
64580eb
d7db146
ac6aca8
d7db146
ac6aca8
 
d7db146
9c8c3ed
d7db146
c1f41ab
9c8c3ed
 
 
 
3d845fb
af10795
 
f782fe6
 
 
 
 
d7db146
3d845fb
49a1dd4
3d845fb
ac6aca8
 
af10795
9b80a97
58df7f1
 
 
 
 
 
 
7681953
 
58df7f1
 
 
 
 
 
 
 
ac6aca8
3d845fb
 
13fb76e
 
58df7f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import subprocess
import time
from typing import Dict, List, Tuple

import gradio as gr  # pylint: disable=import-error
import numpy as np
import pandas as pd
import requests
from symptoms_categories import SYMPTOMS_LIST
from utils import (
    CLIENT_DIR,
    CURRENT_DIR,
    DEPLOYMENT_DIR,
    INPUT_BROWSER_LIMIT,
    KEYS_DIR,
    SERVER_URL,
    TARGET_COLUMNS,
    TRAINING_FILENAME,
    clean_directory,
    get_disease_name,
    load_data,
    pretty_print,
)

from concrete.ml.deployment import FHEModelClient

subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)

# pylint: disable=c-extension-no-member,invalid-name


def is_none(obj) -> bool:
    """
    Check if the object is None.

    Args:
        obj (any): The input to be checked.

    Returns:
        bool: True if the object is None or empty, False otherwise.
    """
    return obj is None or (obj is not None and len(obj) < 1)


def display_default_symptoms_fn(default_disease: str) -> Dict:
    """
    Displays the symptoms of a given existing disease.

    Args:
        default_disease (str): Disease
    Returns:
        Dict: The according symptoms
    """
    df = pd.read_csv(TRAINING_FILENAME)
    df_filtred = df[df[TARGET_COLUMNS[1]] == default_disease]

    return {
        default_symptoms: gr.update(
            visible=True,
            value=pretty_print(
                df_filtred.columns[df_filtred.eq(1).any()].to_list(), delimiter=", "
            ),
        )
    }


def get_user_symptoms_from_checkboxgroup(checkbox_symptoms: List) -> np.array:
    """
    Convert the user symptoms into a binary vector representation.

    Args:
        checkbox_symptoms (List): A list of user symptoms.

    Returns:
        np.array: A binary vector representing the user's symptoms.

    Raises:
        KeyError: If a provided symptom is not recognized as a valid symptom.

    """
    symptoms_vector = {key: 0 for key in valid_symptoms}
    for pretty_symptom in checkbox_symptoms:
        original_symptom = "_".join((pretty_symptom.lower().split(" ")))
        if original_symptom not in symptoms_vector.keys():
            raise KeyError(
                f"The symptom '{original_symptom}' you provided is not recognized as a valid "
                f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}"
            )
        symptoms_vector[original_symptom] = 1

    user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :]

    assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())

    return user_symptoms_vect


def get_features_fn(*checked_symptoms: Tuple[str]) -> Dict:
    """
    Get vector features based on the selected symptoms.

    Args:
        checked_symptoms (Tuple[str]): User symptoms

    Returns:
        Dict: The encoded user vector symptoms.
    """
    if not any(lst for lst in checked_symptoms if lst):
        return {
            error_box1: gr.update(visible=True, value="⚠️ Please provide your chief complaints."),
        }

    if len(pretty_print(checked_symptoms)) < 5:
        print("Provide at least 5 symptoms.")
        return {
            error_box1: gr.update(visible=True, value="⚠️ Provide at least 5 symptoms"),
            one_hot_vector: None,
        }

    return {
        error_box1: gr.update(visible=False),
        one_hot_vector: gr.update(
            visible=False,
            value=get_user_symptoms_from_checkboxgroup(pretty_print(checked_symptoms)),
        ),
        submit_btn: gr.update(value="Data submitted ✅"),
    }


def key_gen_fn(user_symptoms: List[str]) -> Dict:
    """
    Generate keys for a given user.

    Args:
        user_symptoms (List[str]): The vector symptoms provided by the user.

    Returns:
        dict: A dictionary containing the generated keys and related information.

    """
    clean_directory()

    if is_none(user_symptoms):
        print("Error: Please submit your symptoms or select a default disease.")
        return {
            error_box2: gr.update(visible=True, value="⚠️ Please submit your symptoms first."),
        }

    # Generate a random user ID
    user_id = np.random.randint(0, 2**32)
    print(f"Your user ID is: {user_id}....")

    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()

    # Creates the private and evaluation keys on the client side
    client.generate_private_and_evaluation_keys()

    # Get the serialized evaluation keys
    serialized_evaluation_keys = client.get_serialized_evaluation_keys()
    assert isinstance(serialized_evaluation_keys, bytes)

    # Save the evaluation key
    evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
    with evaluation_key_path.open("wb") as f:
        f.write(serialized_evaluation_keys)

    serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]

    return {
        error_box2: gr.update(visible=False),
        key_box: gr.update(visible=False, value=serialized_evaluation_keys_shorten_hex),
        user_id_box: gr.update(visible=True, value=user_id),
        key_len_box: gr.update(
            visible=False, value=f"{len(serialized_evaluation_keys) / (10**6):.2f} MB"
        ),
    }


def encrypt_fn(user_symptoms: np.ndarray, user_id: str) -> None:
    """
    Encrypt the user symptoms vector in the `Client Side`.

    Args:
        user_symptoms (List[str]): The vector symptoms provided by the user
        user_id (user): The current user's ID
    """

    if is_none(user_id) or is_none(user_symptoms):
        print("Error in encryption step: Provide your symptoms and generate the evaluation keys.")
        return {
            error_box3: gr.update(
                visible=True,
                value="⚠️ Please ensure that your symptoms have been submitted and "
                "that you have generated the evaluation key.",
            )
        }

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()

    user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1)
    #quant_user_symptoms = client.model.quantize_input(user_symptoms)

    encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
    assert isinstance(encrypted_quantized_user_symptoms, bytes)
    encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"

    with encrypted_input_path.open("wb") as f:
        f.write(encrypted_quantized_user_symptoms)

    encrypted_quantized_user_symptoms_shorten_hex = encrypted_quantized_user_symptoms.hex()[
        :INPUT_BROWSER_LIMIT
    ]

    return {
        error_box3: gr.update(visible=False),
        one_hot_vector_box: gr.update(visible=True, value=user_symptoms),
        enc_vect_box: gr.update(visible=True, value=encrypted_quantized_user_symptoms_shorten_hex),
    }


def send_input_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
    """Send the encrypted data and the evaluation key to the server.

    Args:
        user_id (str): The current user's ID
        user_symptoms (np.ndarray): The user symptoms
    """

    if is_none(user_id) or is_none(user_symptoms):
        return {
            error_box4: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the symptoms have been submitted and the evaluation "
                "key has been generated before sending the data to the server.",
            )
        }

    evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
    encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"

    if not evaluation_key_path.is_file():
        print(
            "Error Encountered While Sending Data to the Server: "
            f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
        )

        return {
            error_box4: gr.update(visible=True, value="⚠️ Please generate the private key first.")
        }

    if not encrypted_input_path.is_file():
        print(
            "Error Encountered While Sending Data to the Server: The data has not been encrypted "
            f"correctly on the client side - {encrypted_input_path.is_file()=}"
        )
        return {
            error_box4: gr.update(
                visible=True,
                value="⚠️ Please encrypt the data with the private key first.",
            ),
        }

    # Define the data and files to post
    data = {
        "user_id": user_id,
        "input": user_symptoms,
    }

    files = [
        ("files", open(encrypted_input_path, "rb")),
        ("files", open(evaluation_key_path, "rb")),
    ]

    # Send the encrypted input and evaluation key to the server
    url = SERVER_URL + "send_input"
    with requests.post(
        url=url,
        data=data,
        files=files,
    ) as response:
        print(f"Sending Data: {response.ok=}")
    return {
        error_box4: gr.update(visible=False),
        srv_resp_send_data_box: "Data sent",
    }


def run_fhe_fn(user_id: str) -> Dict:
    """Send the encrypted input and the evaluation key to the server.

    Args:
        user_id (int): The current user's ID.
    """
    if is_none(user_id):
        return {
            error_box5: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the symptoms have been submitted, the evaluation "
                "key has been generated and the server received the data "
                "before processing the data.",
            ),
            fhe_execution_time_box: None,
        }

    data = {
        "user_id": user_id,
    }

    url = SERVER_URL + "run_fhe"

    with requests.post(
        url=url,
        data=data,
    ) as response:
        if not response.ok:
            return {
                error_box5: gr.update(
                    visible=True,
                    value=(
                        "⚠️ An error occurred on the Server Side. "
                        "Please check connectivity and data transmission."
                    ),
                ),
                fhe_execution_time_box: gr.update(visible=False),
            }
        else:
            time.sleep(1)
            print(f"response.ok: {response.ok}, {response.json()} - Computed")

    return {
        error_box5: gr.update(visible=False),
        fhe_execution_time_box: gr.update(visible=True, value=f"{response.json():.2f} seconds"),
    }


def get_output_fn(user_id: str, user_symptoms: np.ndarray) -> Dict:
    """Retreive the encrypted data from the server.

    Args:
        user_id (str): The current user's ID
        user_symptoms (np.ndarray): The user symptoms
    """

    if is_none(user_id) or is_none(user_symptoms):
        return {
            error_box6: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the server has successfully processed and transmitted the data to the client.",
            )
        }

    data = {
        "user_id": user_id,
    }

    # Retrieve the encrypted output
    url = SERVER_URL + "get_output"
    with requests.post(
        url=url,
        data=data,
    ) as response:
        if response.ok:
            print(f"Receive Data: {response.ok=}")

            encrypted_output = response.content

            # Save the encrypted output to bytes in a file as it is too large to pass through
            # regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
            encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output"

            with encrypted_output_path.open("wb") as f:
                f.write(encrypted_output)
    return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"}


def decrypt_fn(
    user_id: str, user_symptoms: np.ndarray, *checked_symptoms, threshold: int = 0.5
) -> Dict:
    """Dencrypt the data on the `Client Side`.

    Args:
        user_id (str): The current user's ID
        user_symptoms (np.ndarray): The user symptoms
        threshold (float): Probability confidence threshold

    Returns:
        Decrypted output
    """

    if is_none(user_id) or is_none(user_symptoms):
        return {
            error_box7: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the client has successfully received the data from the server.",
            )
        }

    # Get the encrypted output path
    encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output"

    if not encrypted_output_path.is_file():
        print("Error in decryption step: Please run the FHE execution, first.")
        return {
            error_box7: gr.update(
                visible=True,
                value="⚠️ Please ensure that: \n"
                "- the connectivity \n"
                "- the symptoms have been submitted \n"
                "- the evaluation key has been generated \n"
                "- the server processed the encrypted data \n"
                "- the Client received the data from the Server before decrypting the prediction",
            ),
            decrypt_box: None,
        }

    # Load the encrypted output as bytes
    with encrypted_output_path.open("rb") as f:
        encrypted_output = f.read()

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()

    # Deserialize, decrypt and post-process the encrypted output
    output = client.deserialize_decrypt_dequantize(encrypted_output)

    top3_diseases = np.argsort(output.flatten())[-3:][::-1]
    top3_proba = output[0][top3_diseases]

    if (
        (top3_proba[0] < threshold)
        or (np.sum(top3_proba) < threshold)
        or (abs(top3_proba[0] - top3_proba[1]) < threshold)
    ):
        out = "⚠️ The prediction appears uncertain; including more symptoms may improve the results.\n\n"

    else:
        out = ""

    out = (
        f"{out}"
        f"Given the symptoms you provided: {pretty_print(checked_symptoms, case_conversion=str.capitalize, delimiter=', ')}\n\n"
        "Here are the top3 predictions:\n\n"
        f"1. « {get_disease_name(top3_diseases[0])} » with a probability of {top3_proba[0]:.2%}\n"
        f"2. « {get_disease_name(top3_diseases[1])} » with a probability of {top3_proba[1]:.2%}\n"
        f"3. « {get_disease_name(top3_diseases[2])} » with a probability of {top3_proba[2]:.2%}\n"
    )

    return {
        error_box7: gr.update(visible=False),
        decrypt_box: out,
        submit_btn: gr.update(value="Submit")
    }


def reset_fn():
    """Reset the space and clear all the box outputs."""

    clean_directory()

    return {
        one_hot_vector_box: None,
        submit_btn: gr.update(value="Submit"),
        user_id_box: gr.update(visible=False, value=None),
        one_hot_vector: None,
        default_symptoms: gr.update(visible=True, value=None),
        disease_box: gr.update(visible=True, value=None),
        quant_vect_box: gr.update(visible=False, value=None),
        enc_vect_box: gr.update(visible=True, value=None),
        key_box: gr.update(visible=True, value=None),
        key_len_box: gr.update(visible=False, value=None),
        fhe_execution_time_box: gr.update(visible=True, value=None),
        decrypt_box: None,
        error_box7: gr.update(visible=False),
        error_box1: gr.update(visible=False),
        error_box2: gr.update(visible=False),
        error_box3: gr.update(visible=False),
        error_box4: gr.update(visible=False),
        error_box5: gr.update(visible=False),
        error_box6: gr.update(visible=False),
        srv_resp_send_data_box: None,
        srv_resp_retrieve_data_box: None,
        **{box: None for box in check_boxes},
    }


if __name__ == "__main__":

    print("Starting demo ...")

    clean_directory()

    (X_train, X_test), (y_train, y_test), valid_symptoms, diseases = load_data()

    with gr.Blocks() as demo:

        # Link + images
        gr.Markdown(
            """
            <p align="center">
                <img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
            </p>

            <h2 align="center">Health Prediction On Encrypted Data Using Fully Homomorphic Encryption.</h2>

            <p align="center">
                <a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>

                <a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>

                <a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>

                <a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
            </p>

            <p align="center">
            <img width="65%" height="20%" src="https://raw.githubusercontent.com/kcelia/Img/main/hf_space_3_health_prediction_cover_image.png">
            </p>
            """
        )
        gr.Markdown("## Notes")
        gr.Markdown(
        """
        - The private key is used to encrypt and decrypt the data and shall never be shared.
        - The evaluation key is a public key that the server needs to process encrypted data.
        """
        )

        # ------------------------- Step 1 -------------------------
        gr.Markdown("\n")
        gr.Markdown("## Step 1: Select chief complaints")
        gr.Markdown("<hr />")
        gr.Markdown("<span style='color:grey'>Client Side</span>")
        gr.Markdown("Select at least 5 chief complaints from the list below.")

        # Step 1.1: Provide symptoms
        check_boxes = []
        with gr.Row():
            with gr.Column():
                for category in SYMPTOMS_LIST[:3]:
                    with gr.Accordion(pretty_print(category.keys()), open=False):
                        check_box = gr.CheckboxGroup( pretty_print(category.values()), show_label=False)
                        check_boxes.append(check_box)
            with gr.Column():
                for category in SYMPTOMS_LIST[3:6]:
                    with gr.Accordion(pretty_print(category.keys()), open=False):
                        check_box = gr.CheckboxGroup( pretty_print(category.values()), show_label=False)
                        check_boxes.append(check_box)
            with gr.Column():
                for category in SYMPTOMS_LIST[6:]:
                    with gr.Accordion(pretty_print(category.keys()), open=False):
                        check_box = gr.CheckboxGroup( pretty_print(category.values()), show_label=False)
                        check_boxes.append(check_box)

        error_box1 = gr.Textbox(label="Error ❌", visible=False)

        # Default disease, picked from the dataframe
        gr.Markdown("You can choose an **existing disease** and explore its associated symptoms.", visible=False)

        with gr.Row():
            with gr.Column(scale=2):
                disease_box = gr.Dropdown(sorted(diseases), label="Diseases", visible=False)
            with gr.Column(scale=5):
                default_symptoms = gr.Textbox(label="Related Symptoms:", visible=False)
        # User vector symptoms encoded in oneHot representation
        one_hot_vector = gr.Textbox(visible=False)
        # Submit botton
        submit_btn = gr.Button("Submit")
        # Clear botton
        clear_button = gr.Button("Reset Space 🔁", visible=False)    
    
        disease_box.change(fn=display_default_symptoms_fn, inputs=[disease_box], outputs=[default_symptoms])


        submit_btn.click(
            fn=get_features_fn,
            inputs=[*check_boxes],
            outputs=[one_hot_vector, error_box1, submit_btn],
        )

        # ------------------------- Step 2 -------------------------
        gr.Markdown("\n")
        gr.Markdown("## Step 2: Encrypt data")
        gr.Markdown("<hr />")
        gr.Markdown("<span style='color:grey'>Client Side</span>")
        # Step 2.1: Key generation
        gr.Markdown(
            "### Key Generation\n\n"
            "In FHE schemes, a secret (enc/dec)ryption keys are generated for encrypting and decrypting data owned by the client. \n\n"
            "Additionally, a public evaluation key is generated, enabling external entities to perform homomorphic operations on encrypted data, without the need to decrypt them. \n\n"
            "The evaluation key will be transmitted to the server for further processing."
        )

        gen_key_btn = gr.Button("Generate the evaluation key")
        error_box2 = gr.Textbox(label="Error ❌", visible=False)
        user_id_box = gr.Textbox(label="User ID:", visible=True)
        key_len_box = gr.Textbox(label="Evaluation Key Size:",  visible=False)
        key_box = gr.Textbox(label="Evaluation key (truncated):", max_lines=3, visible=False)
        
        gen_key_btn.click(
            key_gen_fn,
            inputs=one_hot_vector,
            outputs=[
                key_box,
                user_id_box,
                key_len_box,
                error_box2,
            ],
        )

        # Step 2.2: Encrypt data locally
        gr.Markdown("### Encrypt the data")
        encrypt_btn = gr.Button("Encrypt the data using the private secret key")
        error_box3 = gr.Textbox(label="Error ❌", visible=False)
        quant_vect_box = gr.Textbox(label="Quantized Vector:", visible=False)

        with gr.Row():
            with gr.Column():
                one_hot_vector_box = gr.Textbox(label="User Symptoms Vector:", max_lines=10)
            with gr.Column():
                enc_vect_box = gr.Textbox(label="Encrypted Vector:", max_lines=10)

        encrypt_btn.click(
            encrypt_fn,
            inputs=[one_hot_vector, user_id_box],
            outputs=[
                one_hot_vector_box,
                enc_vect_box,
                error_box3,
            ],
        )
        # Step 2.3: Send encrypted data to the server
        gr.Markdown(
            "### Send the encrypted data to the <span style='color:grey'>Server Side</span>"
        )
        error_box4 = gr.Textbox(label="Error ❌", visible=False)

        with gr.Row().style(equal_height=False):
            with gr.Column(scale=4):
                send_input_btn = gr.Button("Send data")
            with gr.Column(scale=1):
                srv_resp_send_data_box = gr.Checkbox(label="Data Sent", show_label=False)

        send_input_btn.click(
            send_input_fn,
            inputs=[user_id_box, one_hot_vector],
            outputs=[error_box4, srv_resp_send_data_box],
        )

        # ------------------------- Step 3 -------------------------
        gr.Markdown("\n")
        gr.Markdown("## Step 3: Run the FHE evaluation")
        gr.Markdown("<hr />")
        gr.Markdown("<span style='color:grey'>Server Side</span>")
        gr.Markdown(
            "Once the server receives the encrypted data, it can process and compute the output without ever decrypting the data just as it would on clear data.\n\n"
            "This server employs a [Logistic Regression]() model that has been trained on this [data-set](https://github.com/anujdutt9/Disease-Prediction-from-Symptoms/tree/master/dataset)."
        )

        run_fhe_btn = gr.Button("Run the FHE evaluation")
        error_box5 = gr.Textbox(label="Error ❌", visible=False)
        fhe_execution_time_box = gr.Textbox(label="Total FHE Execution Time:", visible=True)
        run_fhe_btn.click(
            run_fhe_fn,
            inputs=[user_id_box],
            outputs=[fhe_execution_time_box, error_box5],
        )

        # ------------------------- Step 4 -------------------------
        gr.Markdown("\n")
        gr.Markdown("## Step 4: Decrypt the data")
        gr.Markdown("<hr />")
        gr.Markdown("<span style='color:grey'>Client Side</span>")
        gr.Markdown("### Get the encrypted data from the <span style='color:grey'>Server Side</span>")

        error_box6 = gr.Textbox(label="Error ❌", visible=False)

        # Step 4.1: Data transmission
        with gr.Row().style(equal_height=True):
            with gr.Column(scale=4):
                get_output_btn = gr.Button("Get data")
            with gr.Column(scale=1):
                srv_resp_retrieve_data_box = gr.Checkbox(label="Data Received", show_label=False)

        get_output_btn.click(
            get_output_fn,
            inputs=[user_id_box, one_hot_vector],
            outputs=[srv_resp_retrieve_data_box, error_box6],
        )

        # Step 4.1: Data transmission
        gr.Markdown("### Decrypt the output")
        decrypt_btn = gr.Button("Decrypt the output using the private secret key")
        error_box7 = gr.Textbox(label="Error ❌", visible=False)
        decrypt_box = gr.Textbox(label="Decrypted Output:")

        decrypt_btn.click(
            decrypt_fn,
            inputs=[user_id_box, one_hot_vector, *check_boxes],
            outputs=[decrypt_box, error_box7, submit_btn],
        )
        
        # ------------------------- End -------------------------
        
        gr.Markdown(
            """The app was built with [Concrete ML](https://github.com/zama-ai/concrete-ml), a Privacy-Preserving Machine Learning (PPML) open-source set of tools by Zama. 
            Try it yourself and don't forget to star on [Github](https://github.com/zama-ai/concrete-ml) ⭐.
        """)

        gr.Markdown("\n\n")

        gr.Markdown(
           """**Please Note**: This space is intended solely for educational and demonstration purposes. 
           It should not be considered as a replacement for professional medical counsel, diagnosis, or therapy for any health or related issues. 
           Any questions or concerns about your individual health should be addressed to your doctor or another qualified healthcare provider.
        """)

        clear_button.click(
            reset_fn,
            outputs=[
                one_hot_vector_box,
                one_hot_vector,
                submit_btn,
                # disease_box,
                error_box1,
                error_box2,
                error_box3,
                error_box4,
                error_box5,
                error_box6,
                error_box7,
                disease_box,
                default_symptoms,
                user_id_box,
                key_len_box,
                key_box,
                quant_vect_box,
                enc_vect_box,
                srv_resp_send_data_box,
                srv_resp_retrieve_data_box,
                fhe_execution_time_box,
                decrypt_box,
                *check_boxes,
            ],
        )

        demo.launch()