|
import pickle as pkl |
|
import shutil |
|
from pathlib import Path |
|
from time import time |
|
from typing import List, Tuple, Union |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from sklearn import metrics, preprocessing |
|
from sklearn.ensemble import RandomForestClassifier as SklearnRandomForestClassifier |
|
from sklearn.model_selection import train_test_split |
|
|
|
from concrete.ml.common.serialization.loaders import load, loads |
|
from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer |
|
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier |
|
|
|
path_to_model = Path("./client_folder").resolve() |
|
|
|
import subprocess |
|
|
|
from preprocessing import ( |
|
map_prediction, |
|
pretty_print, |
|
) |
|
from symptoms_categories import SYMPTOMS_LIST |
|
|
|
ENCRYPTED_DATA_BROWSER_LIMIT = 500 |
|
|
|
REPO_DIR = Path(__file__).parent |
|
|
|
print(f"{REPO_DIR=}") |
|
|
|
|
|
|
|
|
|
def load_data(): |
|
|
|
df_train = pd.read_csv("./data/Training_preprocessed.csv") |
|
df_test = pd.read_csv("./data/Testing_preprocessed.csv") |
|
|
|
|
|
|
|
|
|
|
|
y_train = df_train["y"] |
|
X_train = df_train.drop(columns=["y", "prognosis"], axis=1, errors="ignore") |
|
|
|
y_test = df_train["y"] |
|
X_test = df_test.drop(columns=["y", "prognosis"], axis=1, errors="ignore") |
|
|
|
return (df_train, X_train, X_test), (df_test, y_train, y_test) |
|
|
|
|
|
def load_model(X_train, y_train): |
|
concrete_args = {"max_depth": 1, "n_bits": 3, "n_estimators": 3, "n_jobs": -1} |
|
classifier = ConcreteXGBoostClassifier(**concrete_args) |
|
classifier.fit(X_train, y_train) |
|
circuit = classifier.compile(X_train) |
|
|
|
return classifier, circuit |
|
|
|
|
|
def key_gen(): |
|
|
|
|
|
user_id = np.random.randint(0, 2**32) |
|
|
|
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}") |
|
client.load() |
|
|
|
|
|
|
|
client.generate_private_and_evaluation_keys() |
|
|
|
|
|
serialized_evaluation_keys = client.get_serialized_evaluation_keys() |
|
assert isinstance(serialized_evaluation_keys, bytes) |
|
|
|
np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys) |
|
|
|
serialized_evaluation_keys_shorten = list(serialized_evaluation_keys)[:200] |
|
serialized_evaluation_keys_shorten_hex = "".join( |
|
f"{i:02x}" for i in serialized_evaluation_keys_shorten |
|
) |
|
|
|
|
|
|
|
return [ |
|
serialized_evaluation_keys_shorten_hex, |
|
user_id, |
|
f"{len(serialized_evaluation_keys) / (10**6):.2f} MB", |
|
] |
|
|
|
|
|
def encode_quantize_encrypt(user_symptoms, user_id): |
|
|
|
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}") |
|
client.load() |
|
|
|
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1) |
|
|
|
quant_user_symptoms = client.model.quantize_input(user_symptoms) |
|
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
np.save(f".fhe_keys/{user_id}/encrypted_quant_vect.npy", encrypted_quantized_user_symptoms) |
|
|
|
encrypted_quantized_encoding_shorten = list(encrypted_quantized_user_symptoms)[:200] |
|
encrypted_quantized_encoding_shorten_hex = "".join( |
|
f"{i:02x}" for i in encrypted_quantized_encoding_shorten |
|
) |
|
|
|
return user_symptoms, quant_user_symptoms, encrypted_quantized_encoding_shorten_hex |
|
|
|
|
|
def decrypt_prediction(encrypted_quantized_vect, user_id): |
|
fhe_api = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}") |
|
fhe_api.load() |
|
fhe_api.generate_private_and_evaluation_keys(force=False) |
|
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_quantized_vect) |
|
return predictions |
|
|
|
|
|
def get_user_vect_symptoms_from_checkboxgroup(*user_symptoms) -> np.array: |
|
symptoms_vector = {key: 0 for key in valid_columns} |
|
|
|
for symptom_box in user_symptoms: |
|
for pretty_symptom in symptom_box: |
|
symptom = "_".join((pretty_symptom.lower().split(" "))) |
|
if symptom not in symptoms_vector.keys(): |
|
raise KeyError( |
|
f"The symptom '{symptom}' you provided is not recognized as a valid " |
|
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}" |
|
) |
|
symptoms_vector[symptom] = 1.0 |
|
|
|
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :] |
|
|
|
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten()) |
|
|
|
return user_symptoms_vect |
|
|
|
|
|
def get_user_vect_symptoms_from_default_disease(disease): |
|
|
|
user_symptom_vector = df_test[df_test["prognosis"] == disease].iloc[0].values |
|
|
|
user_symptoms_vect = np.fromiter(user_symptom_vector[:-2], dtype=float)[np.newaxis, :] |
|
|
|
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten()) |
|
|
|
return user_symptoms_vect |
|
|
|
|
|
def get_user_symptoms_from_default_disease(disease): |
|
df_filtred = df_test[df_test["prognosis"] == disease] |
|
columns_with_1 = df_filtred.columns[df_filtred.eq(1).any()].to_list() |
|
return pretty_print(columns_with_1) |
|
|
|
|
|
def get_user_symptoms_vector(selected_default_disease, *selected_symptoms): |
|
|
|
if any(lst for lst in selected_symptoms if lst) and ( |
|
selected_default_disease is not None and len(selected_default_disease) > 0 |
|
): |
|
|
|
if set(pretty_print(selected_symptoms)) - set( |
|
get_user_symptoms_from_default_disease(selected_default_disease) |
|
): |
|
return { |
|
user_vector_textbox: gr.update(value="An error occurs"), |
|
error_box: gr.update( |
|
visible=True, value="Enter a default disease or select your own symptoms" |
|
), |
|
} |
|
|
|
if not any(lst for lst in selected_symptoms if lst) and ( |
|
selected_default_disease is None |
|
or (selected_default_disease is not None and len(selected_default_disease) < 1) |
|
): |
|
return { |
|
user_vector_textbox: gr.update(value="An error occurs"), |
|
error_box: gr.update( |
|
visible=True, value="Enter a default disease or select your own symptoms" |
|
), |
|
} |
|
|
|
if any(lst for lst in selected_symptoms if lst): |
|
return { |
|
user_vector_textbox: get_user_vect_symptoms_from_checkboxgroup(*selected_symptoms), |
|
} |
|
|
|
|
|
if selected_default_disease is not None and len(selected_default_disease) > 0: |
|
return { |
|
user_vector_textbox: get_user_vect_symptoms_from_default_disease( |
|
selected_default_disease |
|
), |
|
error_box: gr.update(visible=False), |
|
**{ |
|
box: get_user_symptoms_from_default_disease(selected_default_disease) |
|
for box in check_boxes |
|
}, |
|
} |
|
|
|
|
|
def clear_all_buttons(): |
|
return { |
|
user_id_textbox: None, |
|
eval_key_textbox: None, |
|
eval_key_len_textbox: None, |
|
user_vector_textbox: None, |
|
box_default: None, |
|
error_box: gr.update(visible=False), |
|
**{box: None for box in check_boxes}, |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
print("Starting demo ...") |
|
|
|
(df_train, X_train, X_test), (df_test, y_train, y_test) = load_data() |
|
|
|
valid_columns = X_train.columns.to_list() |
|
|
|
with gr.Blocks() as demo: |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png"> |
|
</p> |
|
|
|
<h2 align="center">Health Prediction On Encrypted Data Using Homomorphic Encryption.</h2> |
|
|
|
<p align="center"> |
|
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a> |
|
— |
|
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a> |
|
— |
|
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a> |
|
— |
|
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a> |
|
</p> |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/kcelia/Img/main/demo-img2.png" width="60%" height="60%"> |
|
</p> |
|
""" |
|
) |
|
|
|
|
|
gr.Markdown("## Introduction") |
|
gr.Markdown("""Blablabla""") |
|
|
|
|
|
gr.Markdown("# Step 1: Provide your symptoms") |
|
gr.Markdown("Client side") |
|
|
|
|
|
with gr.Row(): |
|
default_diseases = list(set(df_test["prognosis"])) |
|
box_default = gr.Dropdown(default_diseases, label="Disease") |
|
|
|
|
|
check_boxes = [] |
|
for i, category in enumerate(SYMPTOMS_LIST): |
|
check_box = gr.CheckboxGroup( |
|
pretty_print(category.values()), |
|
label=pretty_print(category.keys()), |
|
info=f"Symptoms related to `{pretty_print(category.values())}`", |
|
max_batch_size=45, |
|
) |
|
check_boxes.append(check_box) |
|
|
|
|
|
with gr.Row(): |
|
user_vector_textbox = gr.Textbox( |
|
label="User symptoms (vector)", |
|
interactive=False, |
|
max_lines=100, |
|
) |
|
error_box = gr.Textbox(label="Error", visible=False) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
submit_button = gr.Button("Submit") |
|
|
|
with gr.Column(): |
|
clear_button = gr.Button("Clear", style="background-color: yellow;") |
|
|
|
|
|
|
|
submit_button.click( |
|
fn=get_user_symptoms_vector, |
|
inputs=[box_default, *check_boxes], |
|
outputs=[user_vector_textbox, error_box, *check_boxes], |
|
) |
|
|
|
concrete_classifier = load( |
|
open("ConcreteRandomForestClassifier.pkl", "r", encoding="utf-8") |
|
) |
|
|
|
gr.Markdown("# Step 2: Generate the keys") |
|
gr.Markdown("Client side") |
|
|
|
gen_key = gr.Button("Generate the keys and send public part to server") |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
user_id_textbox = gr.Textbox( |
|
label="User ID:", |
|
max_lines=4, |
|
interactive=False, |
|
) |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
eval_key_len_textbox = gr.Textbox( |
|
label="Evaluation key size:", max_lines=4, interactive=False |
|
) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=2, min_width=600): |
|
eval_key_textbox = gr.Textbox( |
|
label="Evaluation key (truncated):", |
|
max_lines=4, |
|
interactive=False, |
|
) |
|
|
|
gen_key.click(key_gen, outputs=[eval_key_textbox, user_id_textbox, eval_key_len_textbox]) |
|
|
|
clear_button.click( |
|
clear_all_buttons, |
|
outputs=[ |
|
user_id_textbox, |
|
user_vector_textbox, |
|
eval_key_textbox, |
|
eval_key_len_textbox, |
|
box_default, |
|
error_box, |
|
*check_boxes, |
|
], |
|
) |
|
|
|
gr.Markdown("# Step 3: Encode the message with the private key") |
|
gr.Markdown("Client side") |
|
|
|
encode_msg = gr.Button("Generate the keys and send public part to server") |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
vect_textbox = gr.Textbox( |
|
label="Vector:", |
|
max_lines=4, |
|
interactive=False, |
|
) |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
quant_vect_textbox = gr.Textbox( |
|
label="Quant vector:", max_lines=4, interactive=False |
|
) |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
encrypted_vect_textbox = gr.Textbox( |
|
label="Encrypted vector:", max_lines=4, interactive=False |
|
) |
|
|
|
encode_msg.click( |
|
encode_quantize_encrypt, |
|
inputs=[user_vector_textbox, user_id_textbox], |
|
outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox], |
|
) |
|
|
|
gr.Markdown("# Step 4: Run the FHE evaluation") |
|
gr.Markdown("Server side") |
|
|
|
run_fhe = gr.Button("Run the FHE evaluation") |
|
|
|
gr.Markdown("# Step 5: Decrypt the sentiment") |
|
gr.Markdown("Server side") |
|
|
|
decrypt_target_botton = gr.Button("Decrypt the sentiment") |
|
decrypt_target_textbox = gr.Textbox( |
|
label="Encrypted vector:", max_lines=4, interactive=False |
|
) |
|
|
|
decrypt_target_botton.click( |
|
decrypt_prediction, |
|
inputs=[encrypted_vect_textbox, user_id_textbox], |
|
outputs=[decrypt_target_textbox], |
|
) |
|
|
|
demo.launch() |
|
|