|
import subprocess |
|
import time |
|
from typing import Dict, List, Tuple |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
import requests |
|
from symptoms_categories import SYMPTOMS_LIST |
|
from utils import ( |
|
CLIENT_DIR, |
|
CURRENT_DIR, |
|
DEPLOYMENT_DIR, |
|
INPUT_BROWSER_LIMIT, |
|
KEYS_DIR, |
|
SERVER_URL, |
|
TARGET_COLUMNS, |
|
TRAINING_FILENAME, |
|
clean_directory, |
|
get_disease_name, |
|
load_data, |
|
pretty_print, |
|
) |
|
|
|
from concrete.ml.deployment import FHEModelClient |
|
|
|
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR) |
|
time.sleep(3) |
|
|
|
|
|
|
|
|
|
def is_nan(inputs) -> bool: |
|
""" |
|
Check if the input is NaN. |
|
|
|
Args: |
|
inputs (any): The input to be checked. |
|
|
|
Returns: |
|
bool: True if the input is NaN or empty, False otherwise. |
|
""" |
|
return inputs is None or (inputs is not None and len(inputs) < 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_user_symptoms_from_checkboxgroup(checkbox_symptoms: List) -> np.array: |
|
""" |
|
Convert the user symptoms into a binary vector representation. |
|
|
|
Args: |
|
checkbox_symptoms (list): A list of user symptoms. |
|
|
|
Returns: |
|
np.array: A binary vector representing the user's symptoms. |
|
|
|
Raises: |
|
KeyError: If a provided symptom is not recognized as a valid symptom. |
|
|
|
""" |
|
symptoms_vector = {key: 0 for key in valid_columns} |
|
for pretty_symptom in checkbox_symptoms: |
|
original_symptom = "_".join((pretty_symptom.lower().split(" "))) |
|
if original_symptom not in symptoms_vector.keys(): |
|
raise KeyError( |
|
f"The symptom '{original_symptom}' you provided is not recognized as a valid " |
|
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}" |
|
) |
|
symptoms_vector[original_symptom] = 1 |
|
|
|
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :] |
|
|
|
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten()) |
|
|
|
return user_symptoms_vect |
|
|
|
|
|
def get_features_fn(*checked_symptoms: Tuple[str]) -> Dict: |
|
""" |
|
Get vector features based on the selected symptoms. |
|
|
|
Args: |
|
checked_symptoms (Tuple[str]): User symptoms |
|
|
|
Returns: |
|
Dict: The encoded user vector symptoms. |
|
""" |
|
if not any(lst for lst in checked_symptoms if lst): |
|
return { |
|
error_box1: gr.update( |
|
visible=True, value="Enter a default disease or select your own symptoms" |
|
), |
|
} |
|
|
|
return { |
|
error_box1: gr.update(visible=False), |
|
user_vect_box1: get_user_symptoms_from_checkboxgroup(pretty_print(checked_symptoms)), |
|
} |
|
|
|
|
|
def key_gen_fn(user_symptoms: List[str]) -> Dict: |
|
""" |
|
Generate keys for a given user. |
|
|
|
Args: |
|
user_symptoms (List[str]): The vector symptoms provided by the user. |
|
|
|
Returns: |
|
dict: A dictionary containing the generated keys and related information. |
|
|
|
""" |
|
clean_directory() |
|
|
|
if is_nan(user_symptoms): |
|
print("Error: Please submit your symptoms or select a default disease.") |
|
return { |
|
error_box2: gr.update(visible=True, value="Please submit your symptoms first"), |
|
} |
|
|
|
|
|
user_id = np.random.randint(0, 2**32) |
|
print(f"Your user ID is: {user_id}....") |
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") |
|
client.load() |
|
|
|
|
|
client.generate_private_and_evaluation_keys() |
|
|
|
|
|
serialized_evaluation_keys = client.get_serialized_evaluation_keys() |
|
assert isinstance(serialized_evaluation_keys, bytes) |
|
|
|
|
|
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" |
|
with evaluation_key_path.open("wb") as f: |
|
f.write(serialized_evaluation_keys) |
|
|
|
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT] |
|
|
|
return { |
|
error_box2: gr.update(visible=False), |
|
key_box: serialized_evaluation_keys_shorten_hex, |
|
user_id_box: user_id, |
|
key_len_box: f"{len(serialized_evaluation_keys) / (10**6):.2f} MB", |
|
} |
|
|
|
|
|
def encrypt_fn(user_symptoms: np.ndarray, user_id: str) -> None: |
|
""" |
|
Encrypt the user symptoms vector in the `Client Side`. |
|
|
|
Args: |
|
user_symptoms (List[str]): The vector symptoms provided by the user |
|
user_id (user): The current user's ID |
|
""" |
|
|
|
if is_nan(user_id) or is_nan(user_symptoms): |
|
print("Error in encryption step: Provide your symptoms and generate the evaluation keys.") |
|
return { |
|
error_box3: gr.update( |
|
visible=True, value="Please provide your symptoms and generate the evaluation keys." |
|
) |
|
} |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") |
|
client.load() |
|
|
|
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1) |
|
quant_user_symptoms = client.model.quantize_input(user_symptoms) |
|
|
|
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms) |
|
assert isinstance(encrypted_quantized_user_symptoms, bytes) |
|
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_symptoms" |
|
|
|
with encrypted_input_path.open("wb") as f: |
|
f.write(encrypted_quantized_user_symptoms) |
|
|
|
encrypted_quantized_user_symptoms_shorten_hex = encrypted_quantized_user_symptoms.hex()[ |
|
:INPUT_BROWSER_LIMIT |
|
] |
|
|
|
return { |
|
error_box3: gr.update(visible=False), |
|
user_vect_box2: user_symptoms, |
|
quant_vect_box: quant_user_symptoms, |
|
enc_vect_box: encrypted_quantized_user_symptoms_shorten_hex, |
|
} |
|
|
|
|
|
def send_input_fn(user_id: str, user_symptoms: np.ndarray) -> Dict: |
|
"""Send the encrypted data and the evaluation key to the server. |
|
|
|
Args: |
|
user_id (int): The current user's ID |
|
user_symptoms (numpy.ndarray): The user symptoms |
|
""" |
|
|
|
if is_nan(user_id) or is_nan(user_symptoms): |
|
return { |
|
error_box4: gr.update( |
|
visible=True, |
|
value="Please ensure that the evaluation key has been generated " |
|
"and the symptoms have been submitted before sending the data to the server", |
|
) |
|
} |
|
|
|
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" |
|
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_symptoms" |
|
|
|
if not evaluation_key_path.is_file(): |
|
print( |
|
"Error Encountered While Sending Data to the Server: " |
|
f"The key has been generated correctly - {evaluation_key_path.is_file()=}" |
|
) |
|
|
|
return {error_box4: gr.update(visible=True, value="Please generate the private key first.")} |
|
|
|
if not encrypted_input_path.is_file(): |
|
print( |
|
"Error Encountered While Sending Data to the Server: The data has not been encrypted " |
|
f"correctly on the client side - {encrypted_input_path.is_file()=}" |
|
) |
|
return { |
|
error_box4: gr.update( |
|
visible=True, |
|
value="Please encrypt the data with the private key first.", |
|
), |
|
} |
|
|
|
|
|
data = { |
|
"user_id": user_id, |
|
"filter": user_symptoms, |
|
} |
|
|
|
files = [ |
|
("files", open(encrypted_input_path, "rb")), |
|
("files", open(evaluation_key_path, "rb")), |
|
] |
|
|
|
|
|
url = SERVER_URL + "send_input" |
|
with requests.post( |
|
url=url, |
|
data=data, |
|
files=files, |
|
) as response: |
|
print(f"Sending Data: {response.ok=}") |
|
return {error_box4: gr.update(visible=False), srv_resp_send_data_box: "Data sent"} |
|
|
|
|
|
def run_fhe_fn(user_id: str) -> Dict: |
|
"""Send the encrypted input as well as the evaluation key to the server. |
|
|
|
Args: |
|
user_id (int): The current user's ID. |
|
""" |
|
if is_nan(user_id): |
|
return { |
|
error_box5: gr.update( |
|
visible=True, |
|
value="Please ensure that the evaluation key has been generated " |
|
"and the symptoms have been submitted before sending the data to the server", |
|
) |
|
} |
|
|
|
data = { |
|
"user_id": user_id, |
|
} |
|
|
|
|
|
|
|
url = SERVER_URL + "run_fhe" |
|
|
|
with requests.post( |
|
url=url, |
|
data=data, |
|
) as response: |
|
if not response.ok: |
|
return { |
|
error_box5: gr.update(visible=True, value="Please wait."), |
|
fhe_execution_time_box: gr.update(visible=True), |
|
} |
|
else: |
|
print(f"response.ok: {response.ok}, {response.json()} - Computed") |
|
|
|
return { |
|
error_box5: gr.update(visible=False), |
|
fhe_execution_time_box: gr.update(value=f"{response.json()} seconds"), |
|
} |
|
|
|
|
|
def get_output_fn(user_id: str, user_symptoms: np.ndarray) -> Dict: |
|
"""Retreive the encrypted data from the server. |
|
|
|
Args: |
|
user_id (int): The current user's ID |
|
user_symptoms (numpy.ndarray): The user symptoms |
|
""" |
|
|
|
if is_nan(user_id) or is_nan(user_symptoms): |
|
return { |
|
error_box6: gr.update( |
|
visible=True, |
|
value="Please ensure that the evaluation key has been generated " |
|
"and the symptoms have been submitted before sending the data to the server", |
|
) |
|
} |
|
|
|
|
|
|
|
data = { |
|
"user_id": user_id, |
|
} |
|
|
|
|
|
url = SERVER_URL + "get_output" |
|
with requests.post( |
|
url=url, |
|
data=data, |
|
) as response: |
|
if response.ok: |
|
print(f"Receive Data: {response.ok=}") |
|
|
|
encrypted_output = response.content |
|
|
|
|
|
|
|
encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output" |
|
|
|
with encrypted_output_path.open("wb") as f: |
|
f.write(encrypted_output) |
|
return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"} |
|
|
|
|
|
def decrypt_fn(user_id: str, user_symptoms: np.ndarray) -> Dict: |
|
"""Dencrypt the data on the `Client Side`. |
|
|
|
Args: |
|
user_id (int): The current user's ID |
|
user_symptoms (numpy.ndarray): The user symptoms |
|
|
|
Returns: |
|
Decrypted output |
|
""" |
|
|
|
if is_nan(user_id) or is_nan(user_symptoms): |
|
return { |
|
error_box7: gr.update( |
|
visible=True, |
|
value="Please ensure that the symptoms have been submitted and the evaluation " |
|
"key has been generated", |
|
) |
|
} |
|
|
|
|
|
|
|
encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output" |
|
|
|
if not encrypted_output_path.is_file(): |
|
print("Error in decryption step: Please run the FHE execution, first.") |
|
return { |
|
error_box7: gr.update( |
|
visible=True, |
|
value="Please ensure that the symptoms have been submitted, the evaluation " |
|
"key has been generated and step 5 and 6 have been performed on the Server " |
|
"side before decrypting the prediction", |
|
) |
|
} |
|
|
|
|
|
with encrypted_output_path.open("rb") as f: |
|
encrypted_output = f.read() |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") |
|
client.load() |
|
|
|
output = client.deserialize_decrypt_dequantize(encrypted_output) |
|
|
|
return { |
|
error_box7: gr.update(visible=False), |
|
decrypt_target_box: get_disease_name(output.argmax()), |
|
} |
|
|
|
|
|
|
|
def clear_all_btn(): |
|
"""Clear all the box outputs.""" |
|
|
|
clean_directory() |
|
|
|
return { |
|
|
|
user_id_box: None, |
|
user_vect_box1: None, |
|
user_vect_box2: None, |
|
quant_vect_box: None, |
|
enc_vect_box: None, |
|
key_box: None, |
|
key_len_box: None, |
|
fhe_execution_time_box: None, |
|
decrypt_target_box: None, |
|
error_box7: gr.update(visible=False), |
|
error_box1: gr.update(visible=False), |
|
error_box2: gr.update(visible=False), |
|
error_box3: gr.update(visible=False), |
|
error_box4: gr.update(visible=False), |
|
error_box5: gr.update(visible=False), |
|
error_box6: gr.update(visible=False), |
|
srv_resp_send_data_box: None, |
|
srv_resp_retrieve_data_box: None, |
|
**{box: None for box in check_boxes}, |
|
} |
|
|
|
|
|
CSS = """ |
|
#them {color: orange} |
|
#them {font-size: 25px} |
|
#them {font-weight: bold} |
|
.gradio-container {background-color: white} |
|
.feedback {font-size: 3px !important} |
|
/* #them {text-align: center} */ |
|
""" |
|
|
|
if __name__ == "__main__": |
|
|
|
print("Starting demo ...") |
|
|
|
clean_directory() |
|
|
|
(X_train, X_test), (y_train, y_test) = load_data() |
|
|
|
valid_columns = X_train.columns.to_list() |
|
|
|
with gr.Blocks(css=CSS) as demo: |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png"> |
|
</p> |
|
|
|
<h2 align="center">Health Prediction On Encrypted Data Using Fully Homomorphic Encryption.</h2> |
|
|
|
<p align="center"> |
|
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a> |
|
— |
|
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a> |
|
— |
|
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a> |
|
— |
|
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a> |
|
</p> |
|
|
|
<p align="center"> |
|
<img width="100%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/health_prediction_img.png"> |
|
</p> |
|
""" |
|
) |
|
|
|
with gr.Tabs(elem_id="them"): |
|
with gr.TabItem("1. Symptoms Selection") as feature: |
|
gr.Markdown("<span style='color:orange'>Client Side</span>") |
|
gr.Markdown("## Step 1: Provide your symptoms") |
|
gr.Markdown( |
|
"You can provide your health condition either by checking " |
|
"the symptoms available in the boxes or by selecting a known disease with " |
|
"its predefined set of symptoms." |
|
) |
|
|
|
|
|
check_boxes = [] |
|
for i, category in enumerate(SYMPTOMS_LIST): |
|
with gr.Accordion( |
|
pretty_print(category.keys()), open=False, elem_classes="feedback" |
|
) as accordion: |
|
check_box = gr.CheckboxGroup( |
|
pretty_print(category.values()), |
|
label=pretty_print(category.keys()), |
|
info=f"Symptoms related to `{pretty_print(category.values())}`", |
|
) |
|
check_boxes.append(check_box) |
|
|
|
error_box1 = gr.Textbox(label="Error", visible=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
user_vect_box1 = gr.Textbox(label="User Symptoms Vector:", interactive=False) |
|
|
|
|
|
submit_button = gr.Button("Submit") |
|
|
|
with gr.Row(): |
|
|
|
clear_button = gr.Button("Reset") |
|
|
|
submit_button.click( |
|
fn=get_features_fn, |
|
inputs=[*check_boxes], |
|
outputs=[user_vect_box1, error_box1], |
|
) |
|
|
|
with gr.TabItem("2. Data Encryption") as encryption_tab: |
|
gr.Markdown("<span style='color:orange'>Client Side</span>") |
|
gr.Markdown("## Step 2: Generate the keys") |
|
|
|
gen_key_btn = gr.Button("Generate the keys") |
|
error_box2 = gr.Textbox(label="Error", visible=False) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
user_id_box = gr.Textbox(label="User ID:", interactive=False) |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
key_len_box = gr.Textbox(label="Evaluation Key Size:", interactive=False) |
|
|
|
|
|
with gr.Column(scale=2, min_width=600): |
|
key_box = gr.Textbox( |
|
label="Evaluation key (truncated):", |
|
max_lines=3, |
|
interactive=False, |
|
) |
|
|
|
gen_key_btn.click( |
|
key_gen_fn, |
|
inputs=user_vect_box1, |
|
outputs=[ |
|
key_box, |
|
user_id_box, |
|
key_len_box, |
|
error_box2, |
|
], |
|
) |
|
|
|
gr.Markdown("## Step 3: Encrypt the symptoms") |
|
|
|
encrypt_btn = gr.Button("Encrypt the symptoms with the private key") |
|
error_box3 = gr.Textbox(label="Error", visible=False) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=600): |
|
user_vect_box2 = gr.Textbox( |
|
label="User Symptoms Vector:", interactive=False |
|
) |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
quant_vect_box = gr.Textbox(label="Quantized Vector:", interactive=False) |
|
|
|
with gr.Column(scale=1, min_width=600): |
|
enc_vect_box = gr.Textbox( |
|
label="Encrypted Vector:", max_lines=3, interactive=False |
|
) |
|
|
|
encrypt_btn.click( |
|
encrypt_fn, |
|
inputs=[user_vect_box1, user_id_box], |
|
outputs=[ |
|
user_vect_box2, |
|
quant_vect_box, |
|
enc_vect_box, |
|
error_box3, |
|
], |
|
) |
|
|
|
gr.Markdown( |
|
"## Step 4: Send the encrypted data to the " |
|
"<span style='color:orange'>Server Side</span>" |
|
) |
|
|
|
error_box4 = gr.Textbox(label="Error", visible=False) |
|
|
|
with gr.Row().style(equal_height=False): |
|
with gr.Column(scale=4): |
|
send_input_btn = gr.Button("Send the encrypted data") |
|
with gr.Column(scale=1): |
|
srv_resp_send_data_box = gr.Checkbox( |
|
label="Data Sent", show_label=False, interactive=False |
|
) |
|
|
|
send_input_btn.click( |
|
send_input_fn, |
|
inputs=[user_id_box, user_vect_box1], |
|
outputs=[error_box4, srv_resp_send_data_box], |
|
) |
|
|
|
with gr.TabItem("3. FHE execution") as fhe_tab: |
|
gr.Markdown("<span style='color:orange'>Client Side</span>") |
|
gr.Markdown("## Step 5: Run the FHE evaluation") |
|
|
|
run_fhe_btn = gr.Button("Run the FHE evaluation") |
|
error_box5 = gr.Textbox(label="Error", visible=False) |
|
fhe_execution_time_box = gr.Textbox( |
|
label="Total FHE Execution Time:", interactive=False |
|
) |
|
|
|
run_fhe_btn.click( |
|
run_fhe_fn, |
|
inputs=[user_id_box], |
|
outputs=[fhe_execution_time_box, error_box5], |
|
) |
|
|
|
with gr.TabItem("4. Data Decryption") as decryption_tab: |
|
|
|
gr.Markdown("<span style='color:orange'>Client Side</span>") |
|
|
|
gr.Markdown( |
|
"## Step 6: Get the data from the <span style='color:orange'>Server Side</span>" |
|
) |
|
|
|
error_box6 = gr.Textbox(label="Error", visible=False) |
|
|
|
with gr.Row().style(equal_height=True): |
|
with gr.Column(scale=4): |
|
get_output_btn = gr.Button("Get data") |
|
with gr.Column(scale=1): |
|
srv_resp_retrieve_data_box = gr.Checkbox( |
|
label="Data Received", show_label=False, interactive=False |
|
) |
|
|
|
get_output_btn.click( |
|
get_output_fn, |
|
inputs=[user_id_box, user_vect_box1], |
|
outputs=[srv_resp_retrieve_data_box, error_box6], |
|
) |
|
|
|
|
|
gr.Markdown("## Step 7: Decrypt the output") |
|
|
|
decrypt_target_btn = gr.Button("Decrypt the output") |
|
error_box7 = gr.Textbox(label="Error", visible=False) |
|
decrypt_target_box = gr.Textbox(abel="Decrypted Output:", interactive=False) |
|
|
|
decrypt_target_btn.click( |
|
decrypt_fn, |
|
inputs=[user_id_box, user_vect_box1], |
|
outputs=[decrypt_target_box, error_box7], |
|
) |
|
|
|
clear_button.click( |
|
clear_all_btn, |
|
outputs=[ |
|
user_vect_box1, |
|
user_vect_box2, |
|
|
|
error_box1, |
|
error_box2, |
|
error_box3, |
|
error_box4, |
|
error_box5, |
|
error_box6, |
|
error_box7, |
|
user_id_box, |
|
key_len_box, |
|
key_box, |
|
quant_vect_box, |
|
enc_vect_box, |
|
srv_resp_send_data_box, |
|
srv_resp_retrieve_data_box, |
|
fhe_execution_time_box, |
|
decrypt_target_box, |
|
*check_boxes, |
|
], |
|
) |
|
|
|
demo.launch() |
|
|