chore: add a dev.py file to allow the user to generate server.py and client.py by his own
Browse files- dev.py +48 -0
- requirements.txt +1 -1
dev.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from concrete.ml.sklearn import LogisticRegression as ConcreteLogisticRegression
|
8 |
+
from concrete.ml.deployment import FHEModelDev
|
9 |
+
|
10 |
+
# Files location
|
11 |
+
TRAINING_FILE_NAME = "./data/Training_preprocessed.csv"
|
12 |
+
TESTING_FILE_NAME = "./data/Testing_preprocessed.csv"
|
13 |
+
|
14 |
+
# Load data
|
15 |
+
df_train = pd.read_csv(TRAINING_FILE_NAME)
|
16 |
+
df_test = pd.read_csv(TESTING_FILE_NAME)
|
17 |
+
|
18 |
+
print(df_train.shape)
|
19 |
+
print(df_train.columns)
|
20 |
+
# Split the data into X_train, y_train, X_test_, y_test sets
|
21 |
+
TARGET_COLUMN = ["prognosis_encoded", "prognosis"]
|
22 |
+
|
23 |
+
y_train = df_train[TARGET_COLUMN[0]].values.flatten()
|
24 |
+
y_test = df_test[TARGET_COLUMN[0]].values.flatten()
|
25 |
+
|
26 |
+
X_train = df_train.drop(TARGET_COLUMN, axis=1)
|
27 |
+
X_test = df_test.drop(TARGET_COLUMN, axis=1)
|
28 |
+
|
29 |
+
# Models parameters
|
30 |
+
optimal_param = {"C": 0.9, "n_bits": 13, "solver": "sag", "multi_class": "auto"}
|
31 |
+
|
32 |
+
# Concrete ML model
|
33 |
+
clf = ConcreteLogisticRegression(**optimal_param)
|
34 |
+
|
35 |
+
clf.fit(X_train, y_train)
|
36 |
+
|
37 |
+
fhe_circuit = clf.compile(X_train)
|
38 |
+
|
39 |
+
fhe_circuit.client.keygen(force=False)
|
40 |
+
|
41 |
+
path_to_model = Path("./deployment_logit/").resolve()
|
42 |
+
|
43 |
+
if path_to_model.exists():
|
44 |
+
shutil.rmtree(path_to_model)
|
45 |
+
|
46 |
+
dev = FHEModelDev(path_to_model, clf)
|
47 |
+
|
48 |
+
dev.save(via_mlir=True)
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
concrete-ml==1.4.0
|
2 |
-
gradio==3.
|
3 |
uvicorn>=0.21.0
|
4 |
fastapi>=0.93.0
|
|
|
1 |
concrete-ml==1.4.0
|
2 |
+
gradio==3.40.1
|
3 |
uvicorn>=0.21.0
|
4 |
fastapi>=0.93.0
|