romanbredehoft-zama
commited on
Commit
·
68c9ed6
1
Parent(s):
fee1bf4
Update the requirements, fix the notebook and improve the readme
Browse files- .gitignore +3 -3
- README.md +15 -26
- SentimentClassification.ipynb +172 -119
- app.py +4 -3
- compile.py +11 -29
- deployment/samples_for_compilation.csv +0 -0
- deployment/sentiment_fhe_model/client.zip +3 -0
- deployment/sentiment_fhe_model/server.zip +3 -0
- deployment/sentiment_fhe_model/versions.json +1 -0
- deployment/serialized_model +0 -0
- requirements.txt +2 -2
- sentiment_fhe_model/samples_for_compilation.csv +0 -0
- server.py +1 -1
.gitignore
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
|
2 |
-
tmp_encrypted_quantized_encoding.npy
|
3 |
-
tmp_evaluation_key.npy
|
4 |
.venv
|
5 |
.fhe_keys
|
6 |
*.pyc
|
|
|
|
|
|
1 |
+
tmp/
|
|
|
|
|
2 |
.venv
|
3 |
.fhe_keys
|
4 |
*.pyc
|
5 |
+
local_datasets/
|
6 |
+
.vscode/
|
README.md
CHANGED
@@ -13,11 +13,7 @@ python_version: 3.9
|
|
13 |
|
14 |
# Sentiment Analysis With FHE
|
15 |
|
16 |
-
##
|
17 |
-
|
18 |
-
In this directory, ie `sentiment-analysis-with-transformer`, you can do the following steps.
|
19 |
-
|
20 |
-
### Do once
|
21 |
|
22 |
- First, create a virtual env and activate it:
|
23 |
|
@@ -34,43 +30,36 @@ pip3 install -U pip wheel setuptools --ignore-installed
|
|
34 |
pip3 install -r requirements.txt --ignore-installed
|
35 |
```
|
36 |
|
37 |
-
-
|
38 |
|
39 |
```bash
|
40 |
python3 compile.py
|
41 |
```
|
42 |
|
43 |
-
Check it finish well (with a "Done!").
|
44 |
-
|
45 |
-
### Do each time you relaunch the application
|
46 |
-
|
47 |
-
- Then, in a terminal Tab 1:
|
48 |
-
|
49 |
-
```bash
|
50 |
-
source .venv/bin/activate
|
51 |
-
uvicorn server:app
|
52 |
-
```
|
53 |
|
54 |
-
|
55 |
|
56 |
-
-
|
57 |
|
58 |
```bash
|
59 |
source .venv/bin/activate
|
60 |
python3 app.py
|
61 |
```
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
## Interacting with the application
|
66 |
-
|
67 |
-
Open the given URL link (search for a line like `Running on local URL: http://127.0.0.1:8888/` in your Terminal 2).
|
68 |
|
69 |
-
|
|
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
```bash
|
76 |
bash download_data.sh
|
|
|
13 |
|
14 |
# Sentiment Analysis With FHE
|
15 |
|
16 |
+
## Set up the app locally
|
|
|
|
|
|
|
|
|
17 |
|
18 |
- First, create a virtual env and activate it:
|
19 |
|
|
|
30 |
pip3 install -r requirements.txt --ignore-installed
|
31 |
```
|
32 |
|
33 |
+
- (optional) Compile the FHE algorithm:
|
34 |
|
35 |
```bash
|
36 |
python3 compile.py
|
37 |
```
|
38 |
|
39 |
+
Check it finish well (with a "Done!"). Please note that the actual model initialization and training
|
40 |
+
can be found in the [SentimentClassification notebook](SentimentClassification.ipynb) (see below).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
### Launch the app locally
|
43 |
|
44 |
+
- In a terminal:
|
45 |
|
46 |
```bash
|
47 |
source .venv/bin/activate
|
48 |
python3 app.py
|
49 |
```
|
50 |
|
51 |
+
## Interact with the application
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
Open the given URL link (search for a line like `Running on local URL: http://127.0.0.1:8888/` in the
|
54 |
+
terminal).
|
55 |
|
56 |
+
## Train a new model
|
57 |
|
58 |
+
The notebook [SentimentClassification notebook](SentimentClassification.ipynb) provides a way to
|
59 |
+
train a new model. Be aware that the data needs to be downloaded beforehand using the
|
60 |
+
[download_data.sh](download_data.sh) file (which requires Kaggle CLI).
|
61 |
+
Alternatively, the dataset can be downloaded manually at
|
62 |
+
https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment
|
63 |
|
64 |
```bash
|
65 |
bash download_data.sh
|
SentimentClassification.ipynb
CHANGED
@@ -21,16 +21,16 @@
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
-
"execution_count":
|
25 |
"metadata": {},
|
26 |
"outputs": [],
|
27 |
"source": [
|
28 |
"# Import the required packages\n",
|
29 |
"import os\n",
|
30 |
"import time\n",
|
|
|
31 |
"\n",
|
32 |
"import numpy\n",
|
33 |
-
"import onnx\n",
|
34 |
"import pandas as pd\n",
|
35 |
"from sklearn.metrics import average_precision_score\n",
|
36 |
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
|
@@ -40,7 +40,7 @@
|
|
40 |
},
|
41 |
{
|
42 |
"cell_type": "code",
|
43 |
-
"execution_count":
|
44 |
"metadata": {},
|
45 |
"outputs": [
|
46 |
{
|
@@ -76,7 +76,7 @@
|
|
76 |
},
|
77 |
{
|
78 |
"cell_type": "code",
|
79 |
-
"execution_count":
|
80 |
"metadata": {},
|
81 |
"outputs": [],
|
82 |
"source": [
|
@@ -105,7 +105,7 @@
|
|
105 |
},
|
106 |
{
|
107 |
"cell_type": "code",
|
108 |
-
"execution_count":
|
109 |
"metadata": {},
|
110 |
"outputs": [],
|
111 |
"source": [
|
@@ -123,7 +123,7 @@
|
|
123 |
},
|
124 |
{
|
125 |
"cell_type": "code",
|
126 |
-
"execution_count":
|
127 |
"metadata": {},
|
128 |
"outputs": [],
|
129 |
"source": [
|
@@ -135,55 +135,55 @@
|
|
135 |
" \"n_bits\": [2, 3],\n",
|
136 |
" \"max_depth\": [1],\n",
|
137 |
" \"n_estimators\": [10, 30, 50],\n",
|
138 |
-
" \"n_jobs\": [-1],\n",
|
139 |
"}"
|
140 |
]
|
141 |
},
|
142 |
{
|
143 |
"cell_type": "code",
|
144 |
-
"execution_count":
|
145 |
"metadata": {},
|
146 |
"outputs": [
|
147 |
{
|
148 |
"data": {
|
149 |
"text/html": [
|
150 |
-
"<style>#sk-container-id-
|
151 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
152 |
-
" 'n_estimators': [10, 30, 50]
|
153 |
-
" scoring='accuracy')</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-
|
154 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
155 |
-
" 'n_estimators': [10, 30, 50]
|
156 |
-
" scoring='accuracy')</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-
|
157 |
],
|
158 |
"text/plain": [
|
159 |
-
"GridSearchCV(cv=3, estimator=XGBClassifier(
|
160 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
161 |
-
" 'n_estimators': [10, 30, 50]
|
162 |
" scoring='accuracy')"
|
163 |
]
|
164 |
},
|
165 |
-
"execution_count":
|
166 |
"metadata": {},
|
167 |
"output_type": "execute_result"
|
168 |
}
|
169 |
],
|
170 |
"source": [
|
171 |
"# Run the gridsearch\n",
|
172 |
-
"grid_search = GridSearchCV(model, parameters, cv=3,
|
173 |
"grid_search.fit(X_train, y_train)"
|
174 |
]
|
175 |
},
|
176 |
{
|
177 |
"cell_type": "code",
|
178 |
-
"execution_count":
|
179 |
"metadata": {},
|
180 |
"outputs": [
|
181 |
{
|
182 |
"name": "stdout",
|
183 |
"output_type": "stream",
|
184 |
"text": [
|
185 |
-
"Best score: 0.
|
186 |
-
"Best parameters: {'max_depth': 1, 'n_bits': 3, 'n_estimators': 50
|
187 |
]
|
188 |
}
|
189 |
],
|
@@ -200,17 +200,17 @@
|
|
200 |
},
|
201 |
{
|
202 |
"cell_type": "code",
|
203 |
-
"execution_count":
|
204 |
"metadata": {},
|
205 |
"outputs": [
|
206 |
{
|
207 |
"name": "stdout",
|
208 |
"output_type": "stream",
|
209 |
"text": [
|
210 |
-
"Accuracy: 0.
|
211 |
-
"Average precision score for positive class: 0.
|
212 |
-
"Average precision score for negative class: 0.
|
213 |
-
"Average precision score for neutral class: 0.
|
214 |
]
|
215 |
}
|
216 |
],
|
@@ -238,7 +238,36 @@
|
|
238 |
},
|
239 |
{
|
240 |
"cell_type": "code",
|
241 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
"metadata": {},
|
243 |
"outputs": [
|
244 |
{
|
@@ -246,18 +275,18 @@
|
|
246 |
"output_type": "stream",
|
247 |
"text": [
|
248 |
"5 most positive tweets (class 2):\n",
|
249 |
-
"@
|
250 |
-
"@
|
251 |
-
"@
|
252 |
-
"@
|
253 |
-
"@
|
254 |
"----------------------------------------------------------------------------------------------------\n",
|
255 |
"5 most negative tweets (class 0):\n",
|
256 |
-
"@
|
257 |
-
"@
|
258 |
-
"@SouthwestAir
|
259 |
-
"@
|
260 |
-
"@
|
261 |
]
|
262 |
}
|
263 |
],
|
@@ -265,26 +294,26 @@
|
|
265 |
"# Let's see what are the top predictions based on the probabilities in y_pred_test\n",
|
266 |
"print(\"5 most positive tweets (class 2):\")\n",
|
267 |
"for i in range(5):\n",
|
268 |
-
" print(text_X_test.iloc[
|
269 |
"\n",
|
270 |
"print(\"-\" * 100)\n",
|
271 |
"\n",
|
272 |
"print(\"5 most negative tweets (class 0):\")\n",
|
273 |
"for i in range(5):\n",
|
274 |
-
" print(text_X_test.iloc[
|
275 |
]
|
276 |
},
|
277 |
{
|
278 |
"cell_type": "code",
|
279 |
-
"execution_count":
|
280 |
"metadata": {},
|
281 |
"outputs": [
|
282 |
{
|
283 |
"name": "stdout",
|
284 |
"output_type": "stream",
|
285 |
"text": [
|
286 |
-
"Compilation time:
|
287 |
-
"FHE inference time:
|
288 |
]
|
289 |
}
|
290 |
],
|
@@ -303,22 +332,22 @@
|
|
303 |
"\n",
|
304 |
"# Now let's predict with FHE over a single tweet and print the time it takes\n",
|
305 |
"start = time.perf_counter()\n",
|
306 |
-
"decrypted_proba = best_model.predict_proba(X_tested_tweet,
|
307 |
"end = time.perf_counter()\n",
|
308 |
"print(f\"FHE inference time: {end - start:.4f} seconds\")"
|
309 |
]
|
310 |
},
|
311 |
{
|
312 |
"cell_type": "code",
|
313 |
-
"execution_count":
|
314 |
"metadata": {},
|
315 |
"outputs": [
|
316 |
{
|
317 |
"name": "stdout",
|
318 |
"output_type": "stream",
|
319 |
"text": [
|
320 |
-
"Probabilities from the FHE inference: [[0.
|
321 |
-
"Probabilities from the clear model: [[0.
|
322 |
]
|
323 |
}
|
324 |
],
|
@@ -354,7 +383,7 @@
|
|
354 |
},
|
355 |
{
|
356 |
"cell_type": "code",
|
357 |
-
"execution_count":
|
358 |
"metadata": {},
|
359 |
"outputs": [
|
360 |
{
|
@@ -385,14 +414,19 @@
|
|
385 |
},
|
386 |
{
|
387 |
"cell_type": "code",
|
388 |
-
"execution_count":
|
389 |
"metadata": {},
|
390 |
"outputs": [
|
391 |
{
|
392 |
"name": "stderr",
|
393 |
"output_type": "stream",
|
394 |
"text": [
|
395 |
-
"
|
|
|
|
|
|
|
|
|
|
|
396 |
]
|
397 |
}
|
398 |
],
|
@@ -421,7 +455,7 @@
|
|
421 |
},
|
422 |
{
|
423 |
"cell_type": "code",
|
424 |
-
"execution_count":
|
425 |
"metadata": {},
|
426 |
"outputs": [
|
427 |
{
|
@@ -429,9 +463,9 @@
|
|
429 |
"output_type": "stream",
|
430 |
"text": [
|
431 |
"Predictions for the first 3 tweets:\n",
|
432 |
-
" [[-2.
|
433 |
-
" [ 2.0166504 0.
|
434 |
-
" [ 2.
|
435 |
]
|
436 |
}
|
437 |
],
|
@@ -442,7 +476,7 @@
|
|
442 |
},
|
443 |
{
|
444 |
"cell_type": "code",
|
445 |
-
"execution_count":
|
446 |
"metadata": {},
|
447 |
"outputs": [
|
448 |
{
|
@@ -488,15 +522,15 @@
|
|
488 |
},
|
489 |
{
|
490 |
"cell_type": "code",
|
491 |
-
"execution_count":
|
492 |
"metadata": {},
|
493 |
"outputs": [
|
494 |
{
|
495 |
"name": "stderr",
|
496 |
"output_type": "stream",
|
497 |
"text": [
|
498 |
-
"100%|██████████| 13176/13176 [
|
499 |
-
"100%|██████████| 1464/1464 [00:
|
500 |
]
|
501 |
}
|
502 |
],
|
@@ -542,28 +576,28 @@
|
|
542 |
},
|
543 |
{
|
544 |
"cell_type": "code",
|
545 |
-
"execution_count":
|
546 |
"metadata": {},
|
547 |
"outputs": [
|
548 |
{
|
549 |
"data": {
|
550 |
"text/html": [
|
551 |
-
"<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=3, estimator=XGBClassifier(), n_jobs=1,\n",
|
552 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
553 |
-
" 'n_estimators': [10, 30, 50]
|
554 |
-
" scoring='accuracy')</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">GridSearchCV</label><div class=\"sk-toggleable__content\"><pre>GridSearchCV(cv=3, estimator=XGBClassifier(), n_jobs=1,\n",
|
555 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
556 |
-
" 'n_estimators': [10, 30, 50]
|
557 |
-
" scoring='accuracy')</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">estimator: XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier()</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier()</pre></div></div></div></div></div></div></div></div></div></div>"
|
558 |
],
|
559 |
"text/plain": [
|
560 |
-
"GridSearchCV(cv=3, estimator=XGBClassifier(), n_jobs=1,\n",
|
561 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
562 |
-
" 'n_estimators': [10, 30, 50]
|
563 |
" scoring='accuracy')"
|
564 |
]
|
565 |
},
|
566 |
-
"execution_count":
|
567 |
"metadata": {},
|
568 |
"output_type": "execute_result"
|
569 |
}
|
@@ -576,15 +610,15 @@
|
|
576 |
},
|
577 |
{
|
578 |
"cell_type": "code",
|
579 |
-
"execution_count":
|
580 |
"metadata": {},
|
581 |
"outputs": [
|
582 |
{
|
583 |
"name": "stdout",
|
584 |
"output_type": "stream",
|
585 |
"text": [
|
586 |
-
"Best score: 0.
|
587 |
-
"Best parameters: {'max_depth': 1, 'n_bits': 3, 'n_estimators': 50
|
588 |
]
|
589 |
}
|
590 |
],
|
@@ -601,17 +635,17 @@
|
|
601 |
},
|
602 |
{
|
603 |
"cell_type": "code",
|
604 |
-
"execution_count":
|
605 |
"metadata": {},
|
606 |
"outputs": [
|
607 |
{
|
608 |
"name": "stdout",
|
609 |
"output_type": "stream",
|
610 |
"text": [
|
611 |
-
"Accuracy: 0.
|
612 |
-
"Average precision score for positive class: 0.
|
613 |
-
"Average precision score for negative class: 0.
|
614 |
-
"Average precision score for neutral class: 0.
|
615 |
]
|
616 |
}
|
617 |
],
|
@@ -648,7 +682,7 @@
|
|
648 |
},
|
649 |
{
|
650 |
"cell_type": "code",
|
651 |
-
"execution_count":
|
652 |
"metadata": {},
|
653 |
"outputs": [
|
654 |
{
|
@@ -656,18 +690,18 @@
|
|
656 |
"output_type": "stream",
|
657 |
"text": [
|
658 |
"5 most positive tweets (class 2):\n",
|
|
|
|
|
|
|
659 |
"@SouthwestAir love them! Always get the best deals!\n",
|
660 |
-
"@AmericanAir
|
661 |
-
"@SouthwestAir - Great flight from Phoenix to Dallas tonight!Great service and ON TIME! Makes @timieyancey very happy! http://t.co/TkVCMhbPim\n",
|
662 |
-
"@AmericanAir AA2416 on time and awesome flight. Great job American!\n",
|
663 |
-
"@SouthwestAir AMAZING c/s today by SW thank you SO very much. This is the reason we fly you #southwest\n",
|
664 |
"----------------------------------------------------------------------------------------------------\n",
|
665 |
"5 most negative tweets (class 0):\n",
|
666 |
-
"@
|
667 |
"@USAirways Not only did u lose the flight plan! Now ur flight crew is FAA timed out! Thx for havin us sit on the tarmac for an hr! #Pathetic\n",
|
668 |
-
"@
|
669 |
-
"@
|
670 |
-
"@
|
671 |
]
|
672 |
}
|
673 |
],
|
@@ -689,7 +723,7 @@
|
|
689 |
},
|
690 |
{
|
691 |
"cell_type": "code",
|
692 |
-
"execution_count":
|
693 |
"metadata": {},
|
694 |
"outputs": [
|
695 |
{
|
@@ -697,16 +731,16 @@
|
|
697 |
"output_type": "stream",
|
698 |
"text": [
|
699 |
"5 most positive (predicted) tweets that are actually negative (ground truth class 0):\n",
|
700 |
-
"@USAirways as far as being delayed goes… Looks like tailwinds are going to make up for it. Good news!\n",
|
701 |
"@united thanks for the link, now finally arrived in Brussels, 9 h after schedule...\n",
|
|
|
|
|
702 |
"@USAirways your saving grace was our flight attendant Dallas who was amazing. wish he would transfer to Delta where I would see him again\n",
|
703 |
"@AmericanAir that luggage you forgot...#mia.....he just won an oscar😄💝💝💝\n",
|
704 |
-
"@united thanks for having changed me. Managed to arrive with only 8 hours of delay and exhausted\n",
|
705 |
"----------------------------------------------------------------------------------------------------\n",
|
706 |
"5 most negative (predicted) tweets that are actually positive (ground truth class 2):\n",
|
707 |
"@united thanks for updating me about the 1+ hour delay the exact second I got to ATL. 🙅🙅🙅\n",
|
708 |
-
"@JetBlue you don't remember our date Monday night back to NYC? #heartbroken\n",
|
709 |
"@SouthwestAir save mile to visit family in 2015 and this will impact how many times I can see my mother. I planned and you change the rules\n",
|
|
|
710 |
"@SouthwestAir hot stewardess flipped me off\n",
|
711 |
"@SouthwestAir - We left iPad in a seat pocket. Filed lost item report. Received it exactly 1 week Late Flightr. Is that a record? #unbelievable\n"
|
712 |
]
|
@@ -750,28 +784,35 @@
|
|
750 |
},
|
751 |
{
|
752 |
"cell_type": "code",
|
753 |
-
"execution_count":
|
754 |
"metadata": {},
|
755 |
"outputs": [
|
756 |
{
|
757 |
"name": "stdout",
|
758 |
"output_type": "stream",
|
759 |
"text": [
|
760 |
-
"Compilation time:
|
761 |
]
|
762 |
},
|
763 |
{
|
764 |
"name": "stderr",
|
765 |
"output_type": "stream",
|
766 |
"text": [
|
767 |
-
"100%|██████████| 1/1 [00:00<00:00,
|
768 |
]
|
769 |
},
|
770 |
{
|
771 |
"name": "stdout",
|
772 |
"output_type": "stream",
|
773 |
"text": [
|
774 |
-
"FHE inference time:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
775 |
]
|
776 |
}
|
777 |
],
|
@@ -791,7 +832,7 @@
|
|
791 |
"\n",
|
792 |
"# Now let's predict with FHE over a single tweet and print the time it takes\n",
|
793 |
"start = time.perf_counter()\n",
|
794 |
-
"decrypted_proba = best_model.predict_proba(X_tested_tweet,
|
795 |
"end = time.perf_counter()\n",
|
796 |
"fhe_exec_time = end - start\n",
|
797 |
"print(f\"FHE inference time: {fhe_exec_time:.4f} seconds\")"
|
@@ -799,15 +840,15 @@
|
|
799 |
},
|
800 |
{
|
801 |
"cell_type": "code",
|
802 |
-
"execution_count":
|
803 |
"metadata": {},
|
804 |
"outputs": [
|
805 |
{
|
806 |
"name": "stdout",
|
807 |
"output_type": "stream",
|
808 |
"text": [
|
809 |
-
"Probabilities from the FHE inference: [[0.
|
810 |
-
"Probabilities from the clear model: [[0.
|
811 |
]
|
812 |
}
|
813 |
],
|
@@ -818,34 +859,38 @@
|
|
818 |
},
|
819 |
{
|
820 |
"cell_type": "code",
|
821 |
-
"execution_count":
|
822 |
"metadata": {},
|
823 |
"outputs": [],
|
824 |
"source": [
|
|
|
|
|
|
|
825 |
"# Let's export the final model such that we can reuse it in a client/server environment\n",
|
826 |
"\n",
|
827 |
-
"#
|
828 |
-
"
|
|
|
829 |
"\n",
|
830 |
-
"# Export some data to be used for compilation\n",
|
831 |
"X_train_numpy = X_train_transformer[:100]\n",
|
832 |
"\n",
|
833 |
"# Merge the two arrays in a pandas dataframe\n",
|
834 |
"X_test_numpy_df = pd.DataFrame(X_train_numpy)\n",
|
835 |
"\n",
|
836 |
"# to csv\n",
|
837 |
-
"X_test_numpy_df.to_csv(\"samples_for_compilation.csv\")\n",
|
838 |
"\n",
|
839 |
"# Let's save the model to be pushed to a server later\n",
|
840 |
"from concrete.ml.deployment import FHEModelDev\n",
|
841 |
"\n",
|
842 |
-
"fhe_api = FHEModelDev(\"sentiment_fhe_model\", best_model)\n",
|
843 |
-
"fhe_api.save()"
|
844 |
]
|
845 |
},
|
846 |
{
|
847 |
"cell_type": "code",
|
848 |
-
"execution_count":
|
849 |
"metadata": {},
|
850 |
"outputs": [
|
851 |
{
|
@@ -885,24 +930,24 @@
|
|
885 |
" <tbody>\n",
|
886 |
" <tr>\n",
|
887 |
" <th>TF-IDF + XGBoost</th>\n",
|
888 |
-
" <td>0.
|
889 |
-
" <td>0.
|
890 |
-
" <td>0.
|
891 |
-
" <td>0.
|
892 |
" </tr>\n",
|
893 |
" <tr>\n",
|
894 |
" <th>Transformer Only</th>\n",
|
895 |
" <td>0.805328</td>\n",
|
896 |
" <td>0.854827</td>\n",
|
897 |
" <td>0.954804</td>\n",
|
898 |
-
" <td>0.
|
899 |
" </tr>\n",
|
900 |
" <tr>\n",
|
901 |
" <th>Transformer + XGBoost</th>\n",
|
902 |
-
" <td>0.
|
903 |
-
" <td>0.
|
904 |
-
" <td>0.
|
905 |
-
" <td>0.
|
906 |
" </tr>\n",
|
907 |
" </tbody>\n",
|
908 |
"</table>\n",
|
@@ -911,24 +956,24 @@
|
|
911 |
"text/plain": [
|
912 |
" Accuracy Average Precision (positive) \\\n",
|
913 |
"Model \n",
|
914 |
-
"TF-IDF + XGBoost 0.
|
915 |
"Transformer Only 0.805328 0.854827 \n",
|
916 |
-
"Transformer + XGBoost 0.
|
917 |
"\n",
|
918 |
" Average Precision (negative) \\\n",
|
919 |
"Model \n",
|
920 |
-
"TF-IDF + XGBoost 0.
|
921 |
"Transformer Only 0.954804 \n",
|
922 |
-
"Transformer + XGBoost 0.
|
923 |
"\n",
|
924 |
" Average Precision (neutral) \n",
|
925 |
"Model \n",
|
926 |
-
"TF-IDF + XGBoost
|
927 |
-
"Transformer Only
|
928 |
-
"Transformer + XGBoost
|
929 |
]
|
930 |
},
|
931 |
-
"execution_count":
|
932 |
"metadata": {},
|
933 |
"output_type": "execute_result"
|
934 |
}
|
@@ -991,7 +1036,15 @@
|
|
991 |
"name": "python3"
|
992 |
},
|
993 |
"language_info": {
|
|
|
|
|
|
|
|
|
|
|
|
|
994 |
"name": "python",
|
|
|
|
|
995 |
"version": "3.10.11"
|
996 |
}
|
997 |
},
|
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"execution_count": 31,
|
25 |
"metadata": {},
|
26 |
"outputs": [],
|
27 |
"source": [
|
28 |
"# Import the required packages\n",
|
29 |
"import os\n",
|
30 |
"import time\n",
|
31 |
+
"from pathlib import Path\n",
|
32 |
"\n",
|
33 |
"import numpy\n",
|
|
|
34 |
"import pandas as pd\n",
|
35 |
"from sklearn.metrics import average_precision_score\n",
|
36 |
"from sklearn.model_selection import GridSearchCV, train_test_split\n",
|
|
|
40 |
},
|
41 |
{
|
42 |
"cell_type": "code",
|
43 |
+
"execution_count": 2,
|
44 |
"metadata": {},
|
45 |
"outputs": [
|
46 |
{
|
|
|
76 |
},
|
77 |
{
|
78 |
"cell_type": "code",
|
79 |
+
"execution_count": 3,
|
80 |
"metadata": {},
|
81 |
"outputs": [],
|
82 |
"source": [
|
|
|
105 |
},
|
106 |
{
|
107 |
"cell_type": "code",
|
108 |
+
"execution_count": 4,
|
109 |
"metadata": {},
|
110 |
"outputs": [],
|
111 |
"source": [
|
|
|
123 |
},
|
124 |
{
|
125 |
"cell_type": "code",
|
126 |
+
"execution_count": 5,
|
127 |
"metadata": {},
|
128 |
"outputs": [],
|
129 |
"source": [
|
|
|
135 |
" \"n_bits\": [2, 3],\n",
|
136 |
" \"max_depth\": [1],\n",
|
137 |
" \"n_estimators\": [10, 30, 50],\n",
|
138 |
+
" # \"n_jobs\": [-1],\n",
|
139 |
"}"
|
140 |
]
|
141 |
},
|
142 |
{
|
143 |
"cell_type": "code",
|
144 |
+
"execution_count": 6,
|
145 |
"metadata": {},
|
146 |
"outputs": [
|
147 |
{
|
148 |
"data": {
|
149 |
"text/html": [
|
150 |
+
"<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=3, estimator=XGBClassifier(n_jobs=1),\n",
|
151 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
152 |
+
" 'n_estimators': [10, 30, 50]},\n",
|
153 |
+
" scoring='accuracy')</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">GridSearchCV</label><div class=\"sk-toggleable__content\"><pre>GridSearchCV(cv=3, estimator=XGBClassifier(n_jobs=1),\n",
|
154 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
155 |
+
" 'n_estimators': [10, 30, 50]},\n",
|
156 |
+
" scoring='accuracy')</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">estimator: XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier(n_jobs=1)</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier(n_jobs=1)</pre></div></div></div></div></div></div></div></div></div></div>"
|
157 |
],
|
158 |
"text/plain": [
|
159 |
+
"GridSearchCV(cv=3, estimator=XGBClassifier(n_jobs=1),\n",
|
160 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
161 |
+
" 'n_estimators': [10, 30, 50]},\n",
|
162 |
" scoring='accuracy')"
|
163 |
]
|
164 |
},
|
165 |
+
"execution_count": 6,
|
166 |
"metadata": {},
|
167 |
"output_type": "execute_result"
|
168 |
}
|
169 |
],
|
170 |
"source": [
|
171 |
"# Run the gridsearch\n",
|
172 |
+
"grid_search = GridSearchCV(model, parameters, cv=3, scoring=\"accuracy\")\n",
|
173 |
"grid_search.fit(X_train, y_train)"
|
174 |
]
|
175 |
},
|
176 |
{
|
177 |
"cell_type": "code",
|
178 |
+
"execution_count": 7,
|
179 |
"metadata": {},
|
180 |
"outputs": [
|
181 |
{
|
182 |
"name": "stdout",
|
183 |
"output_type": "stream",
|
184 |
"text": [
|
185 |
+
"Best score: 0.705980570734669\n",
|
186 |
+
"Best parameters: {'max_depth': 1, 'n_bits': 3, 'n_estimators': 50}\n"
|
187 |
]
|
188 |
}
|
189 |
],
|
|
|
200 |
},
|
201 |
{
|
202 |
"cell_type": "code",
|
203 |
+
"execution_count": 8,
|
204 |
"metadata": {},
|
205 |
"outputs": [
|
206 |
{
|
207 |
"name": "stdout",
|
208 |
"output_type": "stream",
|
209 |
"text": [
|
210 |
+
"Accuracy: 0.7117\n",
|
211 |
+
"Average precision score for positive class: 0.6404\n",
|
212 |
+
"Average precision score for negative class: 0.8719\n",
|
213 |
+
"Average precision score for neutral class: 0.4349\n"
|
214 |
]
|
215 |
}
|
216 |
],
|
|
|
238 |
},
|
239 |
{
|
240 |
"cell_type": "code",
|
241 |
+
"execution_count": 9,
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [
|
244 |
+
{
|
245 |
+
"data": {
|
246 |
+
"text/plain": [
|
247 |
+
"array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
248 |
+
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
249 |
+
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
250 |
+
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
251 |
+
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
252 |
+
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
253 |
+
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
254 |
+
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
255 |
+
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
|
256 |
+
" 2, 2, 2, 2, 2, 2])"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
"execution_count": 9,
|
260 |
+
"metadata": {},
|
261 |
+
"output_type": "execute_result"
|
262 |
+
}
|
263 |
+
],
|
264 |
+
"source": [
|
265 |
+
"y_pred_test_tfidf[y_pred_test_tfidf == 2]"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "code",
|
270 |
+
"execution_count": 10,
|
271 |
"metadata": {},
|
272 |
"outputs": [
|
273 |
{
|
|
|
275 |
"output_type": "stream",
|
276 |
"text": [
|
277 |
"5 most positive tweets (class 2):\n",
|
278 |
+
"@JetBlue do bags still fly free or have you started charging? thanks!\n",
|
279 |
+
"@SouthwestAir Is there a way to receive a refund on a trip that was Cancelled Flight online instead of calling? Your phone lines are super busy.\n",
|
280 |
+
"@JetBlue bag is supposedly here in Boston\n",
|
281 |
+
"@AmericanAir Cancelled Flights my flight, doesn't send an email, text or call. Now I'm stranded in Louisville.\n",
|
282 |
+
"@SouthwestAir I need to Cancelled Flight one leg of a flight, but can't seem to do this online. Been on hold on the phone for 10 minutes. Any help?\n",
|
283 |
"----------------------------------------------------------------------------------------------------\n",
|
284 |
"5 most negative tweets (class 0):\n",
|
285 |
+
"@AmericanAir - keeping AA up in the Air! My crew chief cousin Alex Espinosa in DFW! http://t.co/0HXLNvZknP\n",
|
286 |
+
"@JetBlue Called JB 3 times!Everytime, Auto Vmsg:\"your wait time should not be longer than 9 mins\" waited longer than 18 mins and no answer!\n",
|
287 |
+
"@SouthwestAir can you outline the policies for both scenarios?\n",
|
288 |
+
"@united is not a company that values it's customer & after reading tweets to them I'm not the only one who feels that way #lostmybusiness\n",
|
289 |
+
"@JetBlue how about free wifi on flt 1254 out of PBI to make up for 2.5 hr delay? Treat us right.\n"
|
290 |
]
|
291 |
}
|
292 |
],
|
|
|
294 |
"# Let's see what are the top predictions based on the probabilities in y_pred_test\n",
|
295 |
"print(\"5 most positive tweets (class 2):\")\n",
|
296 |
"for i in range(5):\n",
|
297 |
+
" print(text_X_test.iloc[y_pred_test_tfidf[y_pred_test_tfidf==2].argsort()[-1 - i]])\n",
|
298 |
"\n",
|
299 |
"print(\"-\" * 100)\n",
|
300 |
"\n",
|
301 |
"print(\"5 most negative tweets (class 0):\")\n",
|
302 |
"for i in range(5):\n",
|
303 |
+
" print(text_X_test.iloc[y_pred_test_tfidf[y_pred_test_tfidf==0].argsort()[-1 - i]])"
|
304 |
]
|
305 |
},
|
306 |
{
|
307 |
"cell_type": "code",
|
308 |
+
"execution_count": 11,
|
309 |
"metadata": {},
|
310 |
"outputs": [
|
311 |
{
|
312 |
"name": "stdout",
|
313 |
"output_type": "stream",
|
314 |
"text": [
|
315 |
+
"Compilation time: 5.4779 seconds\n",
|
316 |
+
"FHE inference time: 1.1039 seconds\n"
|
317 |
]
|
318 |
}
|
319 |
],
|
|
|
332 |
"\n",
|
333 |
"# Now let's predict with FHE over a single tweet and print the time it takes\n",
|
334 |
"start = time.perf_counter()\n",
|
335 |
+
"decrypted_proba = best_model.predict_proba(X_tested_tweet, fhe=\"execute\")\n",
|
336 |
"end = time.perf_counter()\n",
|
337 |
"print(f\"FHE inference time: {end - start:.4f} seconds\")"
|
338 |
]
|
339 |
},
|
340 |
{
|
341 |
"cell_type": "code",
|
342 |
+
"execution_count": 12,
|
343 |
"metadata": {},
|
344 |
"outputs": [
|
345 |
{
|
346 |
"name": "stdout",
|
347 |
"output_type": "stream",
|
348 |
"text": [
|
349 |
+
"Probabilities from the FHE inference: [[0.30244059 0.17506451 0.5224949 ]]\n",
|
350 |
+
"Probabilities from the clear model: [[0.30244059 0.17506451 0.5224949 ]]\n"
|
351 |
]
|
352 |
}
|
353 |
],
|
|
|
383 |
},
|
384 |
{
|
385 |
"cell_type": "code",
|
386 |
+
"execution_count": 13,
|
387 |
"metadata": {},
|
388 |
"outputs": [
|
389 |
{
|
|
|
414 |
},
|
415 |
{
|
416 |
"cell_type": "code",
|
417 |
+
"execution_count": 14,
|
418 |
"metadata": {},
|
419 |
"outputs": [
|
420 |
{
|
421 |
"name": "stderr",
|
422 |
"output_type": "stream",
|
423 |
"text": [
|
424 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
425 |
+
"To disable this warning, you can either:\n",
|
426 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
427 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
428 |
+
" 0%| | 0/30 [00:00<?, ?it/s]We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.\n",
|
429 |
+
"100%|██████████| 30/30 [00:20<00:00, 1.46it/s]\n"
|
430 |
]
|
431 |
}
|
432 |
],
|
|
|
455 |
},
|
456 |
{
|
457 |
"cell_type": "code",
|
458 |
+
"execution_count": 15,
|
459 |
"metadata": {},
|
460 |
"outputs": [
|
461 |
{
|
|
|
463 |
"output_type": "stream",
|
464 |
"text": [
|
465 |
"Predictions for the first 3 tweets:\n",
|
466 |
+
" [[-2.3807454 -0.61802197 2.9900734 ]\n",
|
467 |
+
" [ 2.0166504 0.49380752 -2.8006463 ]\n",
|
468 |
+
" [ 2.3892734 0.13443531 -2.6873832 ]]\n"
|
469 |
]
|
470 |
}
|
471 |
],
|
|
|
476 |
},
|
477 |
{
|
478 |
"cell_type": "code",
|
479 |
+
"execution_count": 16,
|
480 |
"metadata": {},
|
481 |
"outputs": [
|
482 |
{
|
|
|
522 |
},
|
523 |
{
|
524 |
"cell_type": "code",
|
525 |
+
"execution_count": 17,
|
526 |
"metadata": {},
|
527 |
"outputs": [
|
528 |
{
|
529 |
"name": "stderr",
|
530 |
"output_type": "stream",
|
531 |
"text": [
|
532 |
+
"100%|██████████| 13176/13176 [08:10<00:00, 26.88it/s]\n",
|
533 |
+
"100%|██████████| 1464/1464 [00:54<00:00, 26.90it/s]\n"
|
534 |
]
|
535 |
}
|
536 |
],
|
|
|
576 |
},
|
577 |
{
|
578 |
"cell_type": "code",
|
579 |
+
"execution_count": 18,
|
580 |
"metadata": {},
|
581 |
"outputs": [
|
582 |
{
|
583 |
"data": {
|
584 |
"text/html": [
|
585 |
+
"<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=3, estimator=XGBClassifier(n_jobs=1), n_jobs=1,\n",
|
586 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
587 |
+
" 'n_estimators': [10, 30, 50]},\n",
|
588 |
+
" scoring='accuracy')</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">GridSearchCV</label><div class=\"sk-toggleable__content\"><pre>GridSearchCV(cv=3, estimator=XGBClassifier(n_jobs=1), n_jobs=1,\n",
|
589 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
590 |
+
" 'n_estimators': [10, 30, 50]},\n",
|
591 |
+
" scoring='accuracy')</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">estimator: XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier(n_jobs=1)</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier(n_jobs=1)</pre></div></div></div></div></div></div></div></div></div></div>"
|
592 |
],
|
593 |
"text/plain": [
|
594 |
+
"GridSearchCV(cv=3, estimator=XGBClassifier(n_jobs=1), n_jobs=1,\n",
|
595 |
" param_grid={'max_depth': [1], 'n_bits': [2, 3],\n",
|
596 |
+
" 'n_estimators': [10, 30, 50]},\n",
|
597 |
" scoring='accuracy')"
|
598 |
]
|
599 |
},
|
600 |
+
"execution_count": 18,
|
601 |
"metadata": {},
|
602 |
"output_type": "execute_result"
|
603 |
}
|
|
|
610 |
},
|
611 |
{
|
612 |
"cell_type": "code",
|
613 |
+
"execution_count": 19,
|
614 |
"metadata": {},
|
615 |
"outputs": [
|
616 |
{
|
617 |
"name": "stdout",
|
618 |
"output_type": "stream",
|
619 |
"text": [
|
620 |
+
"Best score: 0.8381147540983607\n",
|
621 |
+
"Best parameters: {'max_depth': 1, 'n_bits': 3, 'n_estimators': 50}\n"
|
622 |
]
|
623 |
}
|
624 |
],
|
|
|
635 |
},
|
636 |
{
|
637 |
"cell_type": "code",
|
638 |
+
"execution_count": 20,
|
639 |
"metadata": {},
|
640 |
"outputs": [
|
641 |
{
|
642 |
"name": "stdout",
|
643 |
"output_type": "stream",
|
644 |
"text": [
|
645 |
+
"Accuracy: 0.8463\n",
|
646 |
+
"Average precision score for positive class: 0.8959\n",
|
647 |
+
"Average precision score for negative class: 0.9647\n",
|
648 |
+
"Average precision score for neutral class: 0.7449\n"
|
649 |
]
|
650 |
}
|
651 |
],
|
|
|
682 |
},
|
683 |
{
|
684 |
"cell_type": "code",
|
685 |
+
"execution_count": 21,
|
686 |
"metadata": {},
|
687 |
"outputs": [
|
688 |
{
|
|
|
690 |
"output_type": "stream",
|
691 |
"text": [
|
692 |
"5 most positive tweets (class 2):\n",
|
693 |
+
"@united I think this is the best first class I have ever gotten!! Denver to LAX and it's wonderful!!!\n",
|
694 |
+
"@AmericanAir Flight 236 was great. Fantastic cabin crew. A+ landing. #thankyou #JFK http://t.co/dRW08djHAI\n",
|
695 |
+
"@SouthwestAir Jason (108639) at Gate #3 in SAN made my afternoon!!! #southwestairlines #stellarservice #thanks!\n",
|
696 |
"@SouthwestAir love them! Always get the best deals!\n",
|
697 |
+
"@AmericanAir simply amazing. Smiles for miles.Thank u for my upgrade tomorrow for ORD.We are spending a lot of time together next few weeks!\n",
|
|
|
|
|
|
|
698 |
"----------------------------------------------------------------------------------------------------\n",
|
699 |
"5 most negative tweets (class 0):\n",
|
700 |
+
"@united first you lost all my bags, now you Cancelled Flight my flight home. 30 min wait to talk to somebody #poorservice #notgoodenough\n",
|
701 |
"@USAirways Not only did u lose the flight plan! Now ur flight crew is FAA timed out! Thx for havin us sit on the tarmac for an hr! #Pathetic\n",
|
702 |
+
"@AmericanAir Phone just disconnects if you stay on the line. Need to checkout of hotel in 2 hrs & have no place to go. Can't keep calling.\n",
|
703 |
+
"@VirginAmerica I have lots of flights to book and your site it not working!!!! I've been on the phone waiting for over 10 minutes..........\n",
|
704 |
+
"@united 3 hour delay plus a jetway that won't move. This biz traveler is never flying u again!\n"
|
705 |
]
|
706 |
}
|
707 |
],
|
|
|
723 |
},
|
724 |
{
|
725 |
"cell_type": "code",
|
726 |
+
"execution_count": 22,
|
727 |
"metadata": {},
|
728 |
"outputs": [
|
729 |
{
|
|
|
731 |
"output_type": "stream",
|
732 |
"text": [
|
733 |
"5 most positive (predicted) tweets that are actually negative (ground truth class 0):\n",
|
|
|
734 |
"@united thanks for the link, now finally arrived in Brussels, 9 h after schedule...\n",
|
735 |
+
"@USAirways as far as being delayed goes… Looks like tailwinds are going to make up for it. Good news!\n",
|
736 |
+
"@united thanks for having changed me. Managed to arrive with only 8 hours of delay and exhausted\n",
|
737 |
"@USAirways your saving grace was our flight attendant Dallas who was amazing. wish he would transfer to Delta where I would see him again\n",
|
738 |
"@AmericanAir that luggage you forgot...#mia.....he just won an oscar😄💝💝💝\n",
|
|
|
739 |
"----------------------------------------------------------------------------------------------------\n",
|
740 |
"5 most negative (predicted) tweets that are actually positive (ground truth class 2):\n",
|
741 |
"@united thanks for updating me about the 1+ hour delay the exact second I got to ATL. 🙅🙅🙅\n",
|
|
|
742 |
"@SouthwestAir save mile to visit family in 2015 and this will impact how many times I can see my mother. I planned and you change the rules\n",
|
743 |
+
"@JetBlue you don't remember our date Monday night back to NYC? #heartbroken\n",
|
744 |
"@SouthwestAir hot stewardess flipped me off\n",
|
745 |
"@SouthwestAir - We left iPad in a seat pocket. Filed lost item report. Received it exactly 1 week Late Flightr. Is that a record? #unbelievable\n"
|
746 |
]
|
|
|
784 |
},
|
785 |
{
|
786 |
"cell_type": "code",
|
787 |
+
"execution_count": 23,
|
788 |
"metadata": {},
|
789 |
"outputs": [
|
790 |
{
|
791 |
"name": "stdout",
|
792 |
"output_type": "stream",
|
793 |
"text": [
|
794 |
+
"Compilation time: 5.9232 seconds\n"
|
795 |
]
|
796 |
},
|
797 |
{
|
798 |
"name": "stderr",
|
799 |
"output_type": "stream",
|
800 |
"text": [
|
801 |
+
"100%|██████████| 1/1 [00:00<00:00, 17.83it/s]"
|
802 |
]
|
803 |
},
|
804 |
{
|
805 |
"name": "stdout",
|
806 |
"output_type": "stream",
|
807 |
"text": [
|
808 |
+
"FHE inference time: 0.8374 seconds\n"
|
809 |
+
]
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"name": "stderr",
|
813 |
+
"output_type": "stream",
|
814 |
+
"text": [
|
815 |
+
"\n"
|
816 |
]
|
817 |
}
|
818 |
],
|
|
|
832 |
"\n",
|
833 |
"# Now let's predict with FHE over a single tweet and print the time it takes\n",
|
834 |
"start = time.perf_counter()\n",
|
835 |
+
"decrypted_proba = best_model.predict_proba(X_tested_tweet, fhe=\"execute\")\n",
|
836 |
"end = time.perf_counter()\n",
|
837 |
"fhe_exec_time = end - start\n",
|
838 |
"print(f\"FHE inference time: {fhe_exec_time:.4f} seconds\")"
|
|
|
840 |
},
|
841 |
{
|
842 |
"cell_type": "code",
|
843 |
+
"execution_count": 24,
|
844 |
"metadata": {},
|
845 |
"outputs": [
|
846 |
{
|
847 |
"name": "stdout",
|
848 |
"output_type": "stream",
|
849 |
"text": [
|
850 |
+
"Probabilities from the FHE inference: [[0.05162184 0.04558276 0.90279541]]\n",
|
851 |
+
"Probabilities from the clear model: [[0.05162184 0.04558276 0.90279541]]\n"
|
852 |
]
|
853 |
}
|
854 |
],
|
|
|
859 |
},
|
860 |
{
|
861 |
"cell_type": "code",
|
862 |
+
"execution_count": 40,
|
863 |
"metadata": {},
|
864 |
"outputs": [],
|
865 |
"source": [
|
866 |
+
"DEPLOYMENT_DIR = Path(\"deployment\")\n",
|
867 |
+
"DEPLOYMENT_DIR.mkdir(exist_ok=True)\n",
|
868 |
+
"\n",
|
869 |
"# Let's export the final model such that we can reuse it in a client/server environment\n",
|
870 |
"\n",
|
871 |
+
"# Serialize the model (for development only)\n",
|
872 |
+
"with (DEPLOYMENT_DIR / \"serialized_model\").open(\"w\") as file:\n",
|
873 |
+
" best_model.dump(file)\n",
|
874 |
"\n",
|
875 |
+
"# Export some data to be used for compilation \n",
|
876 |
"X_train_numpy = X_train_transformer[:100]\n",
|
877 |
"\n",
|
878 |
"# Merge the two arrays in a pandas dataframe\n",
|
879 |
"X_test_numpy_df = pd.DataFrame(X_train_numpy)\n",
|
880 |
"\n",
|
881 |
"# to csv\n",
|
882 |
+
"X_test_numpy_df.to_csv(DEPLOYMENT_DIR / \"samples_for_compilation.csv\")\n",
|
883 |
"\n",
|
884 |
"# Let's save the model to be pushed to a server later\n",
|
885 |
"from concrete.ml.deployment import FHEModelDev\n",
|
886 |
"\n",
|
887 |
+
"fhe_api = FHEModelDev(DEPLOYMENT_DIR / \"sentiment_fhe_model\", best_model)\n",
|
888 |
+
"fhe_api.save(via_mlir=True)"
|
889 |
]
|
890 |
},
|
891 |
{
|
892 |
"cell_type": "code",
|
893 |
+
"execution_count": null,
|
894 |
"metadata": {},
|
895 |
"outputs": [
|
896 |
{
|
|
|
930 |
" <tbody>\n",
|
931 |
" <tr>\n",
|
932 |
" <th>TF-IDF + XGBoost</th>\n",
|
933 |
+
" <td>0.711749</td>\n",
|
934 |
+
" <td>0.640422</td>\n",
|
935 |
+
" <td>0.871891</td>\n",
|
936 |
+
" <td>0.43486</td>\n",
|
937 |
" </tr>\n",
|
938 |
" <tr>\n",
|
939 |
" <th>Transformer Only</th>\n",
|
940 |
" <td>0.805328</td>\n",
|
941 |
" <td>0.854827</td>\n",
|
942 |
" <td>0.954804</td>\n",
|
943 |
+
" <td>0.68011</td>\n",
|
944 |
" </tr>\n",
|
945 |
" <tr>\n",
|
946 |
" <th>Transformer + XGBoost</th>\n",
|
947 |
+
" <td>0.846311</td>\n",
|
948 |
+
" <td>0.895930</td>\n",
|
949 |
+
" <td>0.964674</td>\n",
|
950 |
+
" <td>0.74489</td>\n",
|
951 |
" </tr>\n",
|
952 |
" </tbody>\n",
|
953 |
"</table>\n",
|
|
|
956 |
"text/plain": [
|
957 |
" Accuracy Average Precision (positive) \\\n",
|
958 |
"Model \n",
|
959 |
+
"TF-IDF + XGBoost 0.711749 0.640422 \n",
|
960 |
"Transformer Only 0.805328 0.854827 \n",
|
961 |
+
"Transformer + XGBoost 0.846311 0.895930 \n",
|
962 |
"\n",
|
963 |
" Average Precision (negative) \\\n",
|
964 |
"Model \n",
|
965 |
+
"TF-IDF + XGBoost 0.871891 \n",
|
966 |
"Transformer Only 0.954804 \n",
|
967 |
+
"Transformer + XGBoost 0.964674 \n",
|
968 |
"\n",
|
969 |
" Average Precision (neutral) \n",
|
970 |
"Model \n",
|
971 |
+
"TF-IDF + XGBoost 0.43486 \n",
|
972 |
+
"Transformer Only 0.68011 \n",
|
973 |
+
"Transformer + XGBoost 0.74489 "
|
974 |
]
|
975 |
},
|
976 |
+
"execution_count": 33,
|
977 |
"metadata": {},
|
978 |
"output_type": "execute_result"
|
979 |
}
|
|
|
1036 |
"name": "python3"
|
1037 |
},
|
1038 |
"language_info": {
|
1039 |
+
"codemirror_mode": {
|
1040 |
+
"name": "ipython",
|
1041 |
+
"version": 3
|
1042 |
+
},
|
1043 |
+
"file_extension": ".py",
|
1044 |
+
"mimetype": "text/x-python",
|
1045 |
"name": "python",
|
1046 |
+
"nbconvert_exporter": "python",
|
1047 |
+
"pygments_lexer": "ipython3",
|
1048 |
"version": "3.10.11"
|
1049 |
}
|
1050 |
},
|
app.py
CHANGED
@@ -26,6 +26,7 @@ time.sleep(5)
|
|
26 |
# (encrypted data is too large to display in the browser)
|
27 |
ENCRYPTED_DATA_BROWSER_LIMIT = 500
|
28 |
N_USER_KEY_STORED = 20
|
|
|
29 |
|
30 |
print("Loading the transformer model...")
|
31 |
|
@@ -60,7 +61,7 @@ def keygen():
|
|
60 |
|
61 |
# Let's create a user_id
|
62 |
user_id = numpy.random.randint(0, 2**32)
|
63 |
-
fhe_api = FHEModelClient(
|
64 |
fhe_api.load()
|
65 |
|
66 |
|
@@ -79,7 +80,7 @@ def encode_quantize_encrypt(text, user_id):
|
|
79 |
if not user_id:
|
80 |
raise gr.Error("You need to generate FHE keys first.")
|
81 |
|
82 |
-
fhe_api = FHEModelClient(
|
83 |
fhe_api.load()
|
84 |
encodings = transformer_vectorizer.transform([text])
|
85 |
quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8)
|
@@ -143,7 +144,7 @@ def decrypt_prediction(user_id):
|
|
143 |
# Read encrypted_prediction from the file
|
144 |
encrypted_prediction = numpy.load(encoded_data_path).tobytes()
|
145 |
|
146 |
-
fhe_api = FHEModelClient(
|
147 |
fhe_api.load()
|
148 |
|
149 |
# We need to retrieve the private key that matches the client specs (see issue #18)
|
|
|
26 |
# (encrypted data is too large to display in the browser)
|
27 |
ENCRYPTED_DATA_BROWSER_LIMIT = 500
|
28 |
N_USER_KEY_STORED = 20
|
29 |
+
FHE_MODEL_PATH = "deployment/sentiment_fhe_model"
|
30 |
|
31 |
print("Loading the transformer model...")
|
32 |
|
|
|
61 |
|
62 |
# Let's create a user_id
|
63 |
user_id = numpy.random.randint(0, 2**32)
|
64 |
+
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
65 |
fhe_api.load()
|
66 |
|
67 |
|
|
|
80 |
if not user_id:
|
81 |
raise gr.Error("You need to generate FHE keys first.")
|
82 |
|
83 |
+
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
84 |
fhe_api.load()
|
85 |
encodings = transformer_vectorizer.transform([text])
|
86 |
quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8)
|
|
|
144 |
# Read encrypted_prediction from the file
|
145 |
encrypted_prediction = numpy.load(encoded_data_path).tobytes()
|
146 |
|
147 |
+
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
148 |
fhe_api.load()
|
149 |
|
150 |
# We need to retrieve the private key that matches the client specs (see issue #18)
|
compile.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import onnx
|
2 |
import pandas as pd
|
3 |
from concrete.ml.deployment import FHEModelDev, FHEModelClient
|
4 |
-
from concrete.ml.
|
|
|
5 |
import json
|
6 |
import os
|
7 |
import shutil
|
@@ -10,48 +11,29 @@ from pathlib import Path
|
|
10 |
|
11 |
script_dir = Path(__file__).parent
|
12 |
|
|
|
|
|
13 |
print("Compiling the model...")
|
14 |
|
15 |
-
|
16 |
-
|
17 |
|
18 |
# Load the data from the csv file to be used for compilation
|
19 |
-
data = pd.read_csv(
|
20 |
-
Path.joinpath(script_dir, "sentiment_fhe_model/samples_for_compilation.csv"), index_col=0
|
21 |
-
).values
|
22 |
-
|
23 |
-
# Convert the onnx model to a numpy model
|
24 |
-
_tensor_tree_predict = get_equivalent_numpy_forward(model_onnx)
|
25 |
-
|
26 |
-
model = FHEModelClient(
|
27 |
-
Path.joinpath(script_dir, "sentiment_fhe_model/deployment"), ".fhe_keys"
|
28 |
-
).model
|
29 |
-
|
30 |
-
# Assign the numpy model and compile the model
|
31 |
-
model._tensor_tree_predict = _tensor_tree_predict
|
32 |
|
33 |
# Compile the model
|
34 |
model.compile(data)
|
35 |
|
36 |
-
|
37 |
-
with open(
|
38 |
-
Path.joinpath(script_dir, "sentiment_fhe_model/deployment/serialized_processing.json"), "r"
|
39 |
-
) as f:
|
40 |
-
serialized_processing = json.load(f)
|
41 |
|
42 |
# Delete the deployment folder if it exist
|
43 |
-
if
|
44 |
-
shutil.rmtree(
|
45 |
|
46 |
fhe_api = FHEModelDev(
|
47 |
-
model=model, path_dir=
|
48 |
)
|
49 |
fhe_api.save(via_mlir=True)
|
50 |
|
51 |
-
# Write the serialized_processing.json file to the deployment folder
|
52 |
-
with open(
|
53 |
-
Path.joinpath(script_dir, "sentiment_fhe_model/deployment/serialized_processing.json"), "w"
|
54 |
-
) as f:
|
55 |
-
json.dump(serialized_processing, f)
|
56 |
|
57 |
print("Done!")
|
|
|
1 |
import onnx
|
2 |
import pandas as pd
|
3 |
from concrete.ml.deployment import FHEModelDev, FHEModelClient
|
4 |
+
from concrete.ml.common.serialization.loaders import load
|
5 |
+
from concrete.ml.onnx.convert import get_equivalent_numpy_forward_from_onnx_tree
|
6 |
import json
|
7 |
import os
|
8 |
import shutil
|
|
|
11 |
|
12 |
script_dir = Path(__file__).parent
|
13 |
|
14 |
+
DEPLOYMENT_DIR = script_dir / "deployment"
|
15 |
+
|
16 |
print("Compiling the model...")
|
17 |
|
18 |
+
with (DEPLOYMENT_DIR / "serialized_model").open("r") as file:
|
19 |
+
model = load(file)
|
20 |
|
21 |
# Load the data from the csv file to be used for compilation
|
22 |
+
data = pd.read_csv(DEPLOYMENT_DIR / "samples_for_compilation.csv", index_col=0).values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Compile the model
|
25 |
model.compile(data)
|
26 |
|
27 |
+
dev_model_path = DEPLOYMENT_DIR / "sentiment_fhe_model"
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Delete the deployment folder if it exist
|
30 |
+
if dev_model_path.is_dir():
|
31 |
+
shutil.rmtree(dev_model_path)
|
32 |
|
33 |
fhe_api = FHEModelDev(
|
34 |
+
model=model, path_dir=dev_model_path
|
35 |
)
|
36 |
fhe_api.save(via_mlir=True)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
print("Done!")
|
deployment/samples_for_compilation.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
deployment/sentiment_fhe_model/client.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:972f0c7d83f12e3a43e8f923fc422cdb443b9f64bb6f74c1abf912836ba27e60
|
3 |
+
size 3887326
|
deployment/sentiment_fhe_model/server.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:216d2a78d7ec47ec2a478d5f32ed34cee8a9c45700325e5d8de4e087b7ed8dfc
|
3 |
+
size 3004
|
deployment/sentiment_fhe_model/versions.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"concrete-python": "2.5", "concrete-ml": "1.4.0", "python": "3.10.11"}
|
deployment/serialized_model
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
concrete-ml==1.
|
2 |
gradio==3.40.1
|
3 |
pandas==1.4.3
|
4 |
-
transformers==4.
|
5 |
jupyter==1.0.0
|
|
|
1 |
+
concrete-ml==1.4.0
|
2 |
gradio==3.40.1
|
3 |
pandas==1.4.3
|
4 |
+
transformers==4.36.0
|
5 |
jupyter==1.0.0
|
sentiment_fhe_model/samples_for_compilation.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
server.py
CHANGED
@@ -9,7 +9,7 @@ from pathlib import Path
|
|
9 |
current_dir = Path(__file__).parent
|
10 |
|
11 |
# Load the model
|
12 |
-
fhe_model = FHEModelServer(
|
13 |
|
14 |
class PredictRequest(BaseModel):
|
15 |
evaluation_key: str
|
|
|
9 |
current_dir = Path(__file__).parent
|
10 |
|
11 |
# Load the model
|
12 |
+
fhe_model = FHEModelServer("deployment/sentiment_fhe_model")
|
13 |
|
14 |
class PredictRequest(BaseModel):
|
15 |
evaluation_key: str
|