Upload 31 files
Browse files- roop/FaceSet.py +20 -0
- roop/ProcessEntry.py +7 -0
- roop/ProcessMgr.py +898 -0
- roop/ProcessOptions.py +16 -0
- roop/StreamWriter.py +60 -0
- roop/__init__.py +0 -0
- roop/capturer.py +46 -0
- roop/core.py +404 -0
- roop/face_util.py +309 -0
- roop/ffmpeg_writer.py +218 -0
- roop/globals.py +56 -0
- roop/metadata.py +2 -0
- roop/processors/Enhance_CodeFormer.py +71 -0
- roop/processors/Enhance_DMDNet.py +898 -0
- roop/processors/Enhance_GFPGAN.py +73 -0
- roop/processors/Enhance_GPEN.py +63 -0
- roop/processors/Enhance_RestoreFormerPPlus.py +64 -0
- roop/processors/FaceSwapInsightFace.py +61 -0
- roop/processors/Frame_Colorizer.py +70 -0
- roop/processors/Frame_Filter.py +105 -0
- roop/processors/Frame_Masking.py +71 -0
- roop/processors/Frame_Upscale.py +129 -0
- roop/processors/Mask_Clip2Seg.py +94 -0
- roop/processors/Mask_XSeg.py +58 -0
- roop/processors/__init__.py +0 -0
- roop/template_parser.py +23 -0
- roop/typing.py +9 -0
- roop/util_ffmpeg.py +130 -0
- roop/utilities.py +378 -0
- roop/virtualcam.py +88 -0
- roop/vr_util.py +57 -0
roop/FaceSet.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
class FaceSet:
|
4 |
+
faces = []
|
5 |
+
ref_images = []
|
6 |
+
embedding_average = 'None'
|
7 |
+
embeddings_backup = None
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
self.faces = []
|
11 |
+
self.ref_images = []
|
12 |
+
self.embeddings_backup = None
|
13 |
+
|
14 |
+
def AverageEmbeddings(self):
|
15 |
+
if len(self.faces) > 1 and self.embeddings_backup is None:
|
16 |
+
self.embeddings_backup = self.faces[0]['embedding']
|
17 |
+
embeddings = [face.embedding for face in self.faces]
|
18 |
+
|
19 |
+
self.faces[0]['embedding'] = np.mean(embeddings, axis=0)
|
20 |
+
# try median too?
|
roop/ProcessEntry.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class ProcessEntry:
|
2 |
+
def __init__(self, filename: str, start: int, end: int, fps: float):
|
3 |
+
self.filename = filename
|
4 |
+
self.finalname = None
|
5 |
+
self.startframe = start
|
6 |
+
self.endframe = end
|
7 |
+
self.fps = fps
|
roop/ProcessMgr.py
ADDED
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import psutil
|
5 |
+
|
6 |
+
from roop.ProcessOptions import ProcessOptions
|
7 |
+
|
8 |
+
from roop.face_util import get_first_face, get_all_faces, rotate_anticlockwise, rotate_clockwise, clamp_cut_values
|
9 |
+
from roop.utilities import compute_cosine_distance, get_device, str_to_class
|
10 |
+
import roop.vr_util as vr
|
11 |
+
|
12 |
+
from typing import Any, List, Callable
|
13 |
+
from roop.typing import Frame, Face
|
14 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
15 |
+
from threading import Thread, Lock
|
16 |
+
from queue import Queue
|
17 |
+
from tqdm import tqdm
|
18 |
+
from roop.ffmpeg_writer import FFMPEG_VideoWriter
|
19 |
+
from roop.StreamWriter import StreamWriter
|
20 |
+
import roop.globals
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
# Poor man's enum to be able to compare to int
|
25 |
+
class eNoFaceAction():
|
26 |
+
USE_ORIGINAL_FRAME = 0
|
27 |
+
RETRY_ROTATED = 1
|
28 |
+
SKIP_FRAME = 2
|
29 |
+
SKIP_FRAME_IF_DISSIMILAR = 3,
|
30 |
+
USE_LAST_SWAPPED = 4
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
|
35 |
+
queue: Queue[str] = Queue()
|
36 |
+
for frame_path in temp_frame_paths:
|
37 |
+
queue.put(frame_path)
|
38 |
+
return queue
|
39 |
+
|
40 |
+
|
41 |
+
def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
|
42 |
+
queues = []
|
43 |
+
for _ in range(queue_per_future):
|
44 |
+
if not queue.empty():
|
45 |
+
queues.append(queue.get())
|
46 |
+
return queues
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
class ProcessMgr():
|
51 |
+
input_face_datas = []
|
52 |
+
target_face_datas = []
|
53 |
+
|
54 |
+
imagemask = None
|
55 |
+
|
56 |
+
processors = []
|
57 |
+
options : ProcessOptions = None
|
58 |
+
|
59 |
+
num_threads = 1
|
60 |
+
current_index = 0
|
61 |
+
processing_threads = 1
|
62 |
+
buffer_wait_time = 0.1
|
63 |
+
|
64 |
+
lock = Lock()
|
65 |
+
|
66 |
+
frames_queue = None
|
67 |
+
processed_queue = None
|
68 |
+
|
69 |
+
videowriter= None
|
70 |
+
streamwriter = None
|
71 |
+
|
72 |
+
progress_gradio = None
|
73 |
+
total_frames = 0
|
74 |
+
|
75 |
+
num_frames_no_face = 0
|
76 |
+
last_swapped_frame = None
|
77 |
+
|
78 |
+
output_to_file = None
|
79 |
+
output_to_cam = None
|
80 |
+
|
81 |
+
|
82 |
+
plugins = {
|
83 |
+
'faceswap' : 'FaceSwapInsightFace',
|
84 |
+
'mask_clip2seg' : 'Mask_Clip2Seg',
|
85 |
+
'mask_xseg' : 'Mask_XSeg',
|
86 |
+
'codeformer' : 'Enhance_CodeFormer',
|
87 |
+
'gfpgan' : 'Enhance_GFPGAN',
|
88 |
+
'dmdnet' : 'Enhance_DMDNet',
|
89 |
+
'gpen' : 'Enhance_GPEN',
|
90 |
+
'restoreformer++' : 'Enhance_RestoreFormerPPlus',
|
91 |
+
'colorizer' : 'Frame_Colorizer',
|
92 |
+
'filter_generic' : 'Frame_Filter',
|
93 |
+
'removebg' : 'Frame_Masking',
|
94 |
+
'upscale' : 'Frame_Upscale'
|
95 |
+
}
|
96 |
+
|
97 |
+
def __init__(self, progress):
|
98 |
+
if progress is not None:
|
99 |
+
self.progress_gradio = progress
|
100 |
+
|
101 |
+
def reuseOldProcessor(self, name:str):
|
102 |
+
for p in self.processors:
|
103 |
+
if p.processorname == name:
|
104 |
+
return p
|
105 |
+
|
106 |
+
return None
|
107 |
+
|
108 |
+
|
109 |
+
def initialize(self, input_faces, target_faces, options):
|
110 |
+
self.input_face_datas = input_faces
|
111 |
+
self.target_face_datas = target_faces
|
112 |
+
self.num_frames_no_face = 0
|
113 |
+
self.last_swapped_frame = None
|
114 |
+
self.options = options
|
115 |
+
devicename = get_device()
|
116 |
+
|
117 |
+
roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"]
|
118 |
+
if options.swap_mode == "all_female" or options.swap_mode == "all_male":
|
119 |
+
roop.globals.g_desired_face_analysis.append("genderage")
|
120 |
+
|
121 |
+
for p in self.processors:
|
122 |
+
newp = next((x for x in options.processors.keys() if x == p.processorname), None)
|
123 |
+
if newp is None:
|
124 |
+
p.Release()
|
125 |
+
del p
|
126 |
+
|
127 |
+
newprocessors = []
|
128 |
+
for key, extoption in options.processors.items():
|
129 |
+
p = self.reuseOldProcessor(key)
|
130 |
+
if p is None:
|
131 |
+
classname = self.plugins[key]
|
132 |
+
module = 'roop.processors.' + classname
|
133 |
+
p = str_to_class(module, classname)
|
134 |
+
if p is not None:
|
135 |
+
extoption.update({"devicename": devicename})
|
136 |
+
p.Initialize(extoption)
|
137 |
+
newprocessors.append(p)
|
138 |
+
else:
|
139 |
+
print(f"Not using {module}")
|
140 |
+
self.processors = newprocessors
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0:
|
145 |
+
self.options.imagemask = self.options.imagemask.get("layers")[0]
|
146 |
+
# Get rid of alpha
|
147 |
+
self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY)
|
148 |
+
if np.any(self.options.imagemask):
|
149 |
+
mo = self.input_face_datas[0].faces[0].mask_offsets
|
150 |
+
self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5])
|
151 |
+
self.options.imagemask = self.options.imagemask.astype(np.float32) / 255
|
152 |
+
self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB)
|
153 |
+
else:
|
154 |
+
self.options.imagemask = None
|
155 |
+
|
156 |
+
self.options.frame_processing = False
|
157 |
+
for p in self.processors:
|
158 |
+
if p.type.startswith("frame_"):
|
159 |
+
self.options.frame_processing = True
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
def run_batch(self, source_files, target_files, threads:int = 1):
|
167 |
+
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
|
168 |
+
self.total_frames = len(source_files)
|
169 |
+
self.num_threads = threads
|
170 |
+
with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
|
171 |
+
with ThreadPoolExecutor(max_workers=threads) as executor:
|
172 |
+
futures = []
|
173 |
+
queue = create_queue(source_files)
|
174 |
+
queue_per_future = max(len(source_files) // threads, 1)
|
175 |
+
while not queue.empty():
|
176 |
+
future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
|
177 |
+
futures.append(future)
|
178 |
+
for future in as_completed(futures):
|
179 |
+
future.result()
|
180 |
+
|
181 |
+
|
182 |
+
def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
|
183 |
+
for f in current_files:
|
184 |
+
if not roop.globals.processing:
|
185 |
+
return
|
186 |
+
|
187 |
+
# Decode the byte array into an OpenCV image
|
188 |
+
temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR)
|
189 |
+
if temp_frame is not None:
|
190 |
+
if self.options.frame_processing:
|
191 |
+
for p in self.processors:
|
192 |
+
frame = p.Run(temp_frame)
|
193 |
+
resimg = frame
|
194 |
+
else:
|
195 |
+
resimg = self.process_frame(temp_frame)
|
196 |
+
if resimg is not None:
|
197 |
+
i = source_files.index(f)
|
198 |
+
# Also let numpy write the file to support utf-8/16 filenames
|
199 |
+
cv2.imencode(f'.{roop.globals.CFG.output_image_format}',resimg)[1].tofile(target_files[i])
|
200 |
+
if update:
|
201 |
+
update()
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
|
206 |
+
num_frame = 0
|
207 |
+
total_num = frame_end - frame_start
|
208 |
+
if frame_start > 0:
|
209 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
|
210 |
+
|
211 |
+
while True and roop.globals.processing:
|
212 |
+
ret, frame = cap.read()
|
213 |
+
if not ret:
|
214 |
+
break
|
215 |
+
|
216 |
+
self.frames_queue[num_frame % num_threads].put(frame, block=True)
|
217 |
+
num_frame += 1
|
218 |
+
if num_frame == total_num:
|
219 |
+
break
|
220 |
+
|
221 |
+
for i in range(num_threads):
|
222 |
+
self.frames_queue[i].put(None)
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
def process_videoframes(self, threadindex, progress) -> None:
|
227 |
+
while True:
|
228 |
+
frame = self.frames_queue[threadindex].get()
|
229 |
+
if frame is None:
|
230 |
+
self.processing_threads -= 1
|
231 |
+
self.processed_queue[threadindex].put((False, None))
|
232 |
+
return
|
233 |
+
else:
|
234 |
+
if self.options.frame_processing:
|
235 |
+
for p in self.processors:
|
236 |
+
frame = p.Run(frame)
|
237 |
+
resimg = frame
|
238 |
+
else:
|
239 |
+
resimg = self.process_frame(frame)
|
240 |
+
self.processed_queue[threadindex].put((True, resimg))
|
241 |
+
del frame
|
242 |
+
progress()
|
243 |
+
|
244 |
+
|
245 |
+
def write_frames_thread(self):
|
246 |
+
nextindex = 0
|
247 |
+
num_producers = self.num_threads
|
248 |
+
|
249 |
+
while True:
|
250 |
+
process, frame = self.processed_queue[nextindex % self.num_threads].get()
|
251 |
+
nextindex += 1
|
252 |
+
if frame is not None:
|
253 |
+
if self.output_to_file:
|
254 |
+
self.videowriter.write_frame(frame)
|
255 |
+
if self.output_to_cam:
|
256 |
+
self.streamwriter.WriteToStream(frame)
|
257 |
+
del frame
|
258 |
+
elif process == False:
|
259 |
+
num_producers -= 1
|
260 |
+
if num_producers < 1:
|
261 |
+
return
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
def run_batch_inmem(self, output_method, source_video, target_video, frame_start, frame_end, fps, threads:int = 1):
|
266 |
+
if len(self.processors) < 1:
|
267 |
+
print("No processor defined!")
|
268 |
+
return
|
269 |
+
|
270 |
+
cap = cv2.VideoCapture(source_video)
|
271 |
+
# frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
272 |
+
frame_count = (frame_end - frame_start) + 1
|
273 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
274 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
275 |
+
|
276 |
+
processed_resolution = None
|
277 |
+
for p in self.processors:
|
278 |
+
if hasattr(p, 'getProcessedResolution'):
|
279 |
+
processed_resolution = p.getProcessedResolution(width, height)
|
280 |
+
print(f"Processed resolution: {processed_resolution}")
|
281 |
+
if processed_resolution is not None:
|
282 |
+
width = processed_resolution[0]
|
283 |
+
height = processed_resolution[1]
|
284 |
+
|
285 |
+
|
286 |
+
self.total_frames = frame_count
|
287 |
+
self.num_threads = threads
|
288 |
+
|
289 |
+
self.processing_threads = self.num_threads
|
290 |
+
self.frames_queue = []
|
291 |
+
self.processed_queue = []
|
292 |
+
for _ in range(threads):
|
293 |
+
self.frames_queue.append(Queue(1))
|
294 |
+
self.processed_queue.append(Queue(1))
|
295 |
+
|
296 |
+
self.output_to_file = output_method != "Virtual Camera"
|
297 |
+
self.output_to_cam = output_method == "Virtual Camera" or output_method == "Both"
|
298 |
+
|
299 |
+
if self.output_to_file:
|
300 |
+
self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
|
301 |
+
if self.output_to_cam:
|
302 |
+
self.streamwriter = StreamWriter((width, height), int(fps))
|
303 |
+
|
304 |
+
readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
|
305 |
+
readthread.start()
|
306 |
+
|
307 |
+
writethread = Thread(target=self.write_frames_thread)
|
308 |
+
writethread.start()
|
309 |
+
|
310 |
+
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
|
311 |
+
with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
|
312 |
+
with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
|
313 |
+
futures = []
|
314 |
+
|
315 |
+
for threadindex in range(threads):
|
316 |
+
future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
|
317 |
+
futures.append(future)
|
318 |
+
|
319 |
+
for future in as_completed(futures):
|
320 |
+
future.result()
|
321 |
+
# wait for the task to complete
|
322 |
+
readthread.join()
|
323 |
+
writethread.join()
|
324 |
+
cap.release()
|
325 |
+
if self.output_to_file:
|
326 |
+
self.videowriter.close()
|
327 |
+
if self.output_to_cam:
|
328 |
+
self.streamwriter.Close()
|
329 |
+
|
330 |
+
self.frames_queue.clear()
|
331 |
+
self.processed_queue.clear()
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
def update_progress(self, progress: Any = None) -> None:
|
337 |
+
process = psutil.Process(os.getpid())
|
338 |
+
memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
|
339 |
+
progress.set_postfix({
|
340 |
+
'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
|
341 |
+
'execution_threads': self.num_threads
|
342 |
+
})
|
343 |
+
progress.update(1)
|
344 |
+
if self.progress_gradio is not None:
|
345 |
+
self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
def process_frame(self, frame:Frame):
|
350 |
+
if len(self.input_face_datas) < 1 and not self.options.show_face_masking:
|
351 |
+
return frame
|
352 |
+
temp_frame = frame.copy()
|
353 |
+
num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
|
354 |
+
if num_swapped > 0:
|
355 |
+
if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR:
|
356 |
+
if len(self.input_face_datas) > num_swapped:
|
357 |
+
return None
|
358 |
+
self.num_frames_no_face = 0
|
359 |
+
self.last_swapped_frame = temp_frame.copy()
|
360 |
+
return temp_frame
|
361 |
+
if roop.globals.no_face_action == eNoFaceAction.USE_LAST_SWAPPED:
|
362 |
+
if self.last_swapped_frame is not None and self.num_frames_no_face < self.options.max_num_reuse_frame:
|
363 |
+
self.num_frames_no_face += 1
|
364 |
+
return self.last_swapped_frame.copy()
|
365 |
+
return frame
|
366 |
+
|
367 |
+
elif roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME:
|
368 |
+
return frame
|
369 |
+
if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME:
|
370 |
+
#This only works with in-mem processing, as it simply skips the frame.
|
371 |
+
#For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg.
|
372 |
+
#If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is?????
|
373 |
+
#alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work?
|
374 |
+
return None
|
375 |
+
else:
|
376 |
+
return self.retry_rotated(frame)
|
377 |
+
|
378 |
+
def retry_rotated(self, frame):
|
379 |
+
copyframe = frame.copy()
|
380 |
+
copyframe = rotate_clockwise(copyframe)
|
381 |
+
temp_frame = copyframe.copy()
|
382 |
+
num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
|
383 |
+
if num_swapped > 0:
|
384 |
+
return rotate_anticlockwise(temp_frame)
|
385 |
+
|
386 |
+
copyframe = frame.copy()
|
387 |
+
copyframe = rotate_anticlockwise(copyframe)
|
388 |
+
temp_frame = copyframe.copy()
|
389 |
+
num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
|
390 |
+
if num_swapped > 0:
|
391 |
+
return rotate_clockwise(temp_frame)
|
392 |
+
del copyframe
|
393 |
+
return frame
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
def swap_faces(self, frame, temp_frame):
|
398 |
+
num_faces_found = 0
|
399 |
+
|
400 |
+
if self.options.swap_mode == "first":
|
401 |
+
face = get_first_face(frame)
|
402 |
+
|
403 |
+
if face is None:
|
404 |
+
return num_faces_found, frame
|
405 |
+
|
406 |
+
num_faces_found += 1
|
407 |
+
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
|
408 |
+
del face
|
409 |
+
|
410 |
+
else:
|
411 |
+
faces = get_all_faces(frame)
|
412 |
+
if faces is None:
|
413 |
+
return num_faces_found, frame
|
414 |
+
|
415 |
+
if self.options.swap_mode == "all":
|
416 |
+
for face in faces:
|
417 |
+
num_faces_found += 1
|
418 |
+
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
|
419 |
+
|
420 |
+
elif self.options.swap_mode == "all_input":
|
421 |
+
for i,face in enumerate(faces):
|
422 |
+
num_faces_found += 1
|
423 |
+
if i < len(self.input_face_datas):
|
424 |
+
temp_frame = self.process_face(i, face, temp_frame)
|
425 |
+
else:
|
426 |
+
break
|
427 |
+
|
428 |
+
elif self.options.swap_mode == "selected":
|
429 |
+
num_targetfaces = len(self.target_face_datas)
|
430 |
+
use_index = num_targetfaces == 1
|
431 |
+
for i,tf in enumerate(self.target_face_datas):
|
432 |
+
for face in faces:
|
433 |
+
if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
|
434 |
+
if i < len(self.input_face_datas):
|
435 |
+
if use_index:
|
436 |
+
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
|
437 |
+
else:
|
438 |
+
temp_frame = self.process_face(i, face, temp_frame)
|
439 |
+
num_faces_found += 1
|
440 |
+
if not roop.globals.vr_mode and num_faces_found == num_targetfaces:
|
441 |
+
break
|
442 |
+
elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
|
443 |
+
gender = 'F' if self.options.swap_mode == "all_female" else 'M'
|
444 |
+
for face in faces:
|
445 |
+
if face.sex == gender:
|
446 |
+
num_faces_found += 1
|
447 |
+
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
|
448 |
+
|
449 |
+
# might be slower but way more clean to release everything here
|
450 |
+
for face in faces:
|
451 |
+
del face
|
452 |
+
faces.clear()
|
453 |
+
|
454 |
+
|
455 |
+
|
456 |
+
if roop.globals.vr_mode and num_faces_found % 2 > 0:
|
457 |
+
# stereo image, there has to be an even number of faces
|
458 |
+
num_faces_found = 0
|
459 |
+
return num_faces_found, frame
|
460 |
+
if num_faces_found == 0:
|
461 |
+
return num_faces_found, frame
|
462 |
+
|
463 |
+
#maskprocessor = next((x for x in self.processors if x.type == 'mask'), None)
|
464 |
+
|
465 |
+
if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape:
|
466 |
+
temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask)
|
467 |
+
return num_faces_found, temp_frame
|
468 |
+
|
469 |
+
|
470 |
+
def rotation_action(self, original_face:Face, frame:Frame):
|
471 |
+
(height, width) = frame.shape[:2]
|
472 |
+
|
473 |
+
bounding_box_width = original_face.bbox[2] - original_face.bbox[0]
|
474 |
+
bounding_box_height = original_face.bbox[3] - original_face.bbox[1]
|
475 |
+
horizontal_face = bounding_box_width > bounding_box_height
|
476 |
+
|
477 |
+
center_x = width // 2.0
|
478 |
+
start_x = original_face.bbox[0]
|
479 |
+
end_x = original_face.bbox[2]
|
480 |
+
bbox_center_x = start_x + (bounding_box_width // 2.0)
|
481 |
+
|
482 |
+
# need to leverage the array of landmarks as decribed here:
|
483 |
+
# https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg
|
484 |
+
# basically, we should be able to check for the relative position of eyes and nose
|
485 |
+
# then use that to determine which way the face is actually facing when in a horizontal position
|
486 |
+
# and use that to determine the correct rotation_action
|
487 |
+
|
488 |
+
forehead_x = original_face.landmark_2d_106[72][0]
|
489 |
+
chin_x = original_face.landmark_2d_106[0][0]
|
490 |
+
|
491 |
+
if horizontal_face:
|
492 |
+
if chin_x < forehead_x:
|
493 |
+
# this is someone lying down with their face like this (:
|
494 |
+
return "rotate_anticlockwise"
|
495 |
+
elif forehead_x < chin_x:
|
496 |
+
# this is someone lying down with their face like this :)
|
497 |
+
return "rotate_clockwise"
|
498 |
+
if bbox_center_x >= center_x:
|
499 |
+
# this is someone lying down with their face in the right hand side of the frame
|
500 |
+
return "rotate_anticlockwise"
|
501 |
+
if bbox_center_x < center_x:
|
502 |
+
# this is someone lying down with their face in the left hand side of the frame
|
503 |
+
return "rotate_clockwise"
|
504 |
+
|
505 |
+
return None
|
506 |
+
|
507 |
+
|
508 |
+
def auto_rotate_frame(self, original_face, frame:Frame):
|
509 |
+
target_face = original_face
|
510 |
+
original_frame = frame
|
511 |
+
|
512 |
+
rotation_action = self.rotation_action(original_face, frame)
|
513 |
+
|
514 |
+
if rotation_action == "rotate_anticlockwise":
|
515 |
+
#face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame
|
516 |
+
frame = rotate_anticlockwise(frame)
|
517 |
+
elif rotation_action == "rotate_clockwise":
|
518 |
+
#face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame
|
519 |
+
frame = rotate_clockwise(frame)
|
520 |
+
|
521 |
+
return target_face, frame, rotation_action
|
522 |
+
|
523 |
+
|
524 |
+
def auto_unrotate_frame(self, frame:Frame, rotation_action):
|
525 |
+
if rotation_action == "rotate_anticlockwise":
|
526 |
+
return rotate_clockwise(frame)
|
527 |
+
elif rotation_action == "rotate_clockwise":
|
528 |
+
return rotate_anticlockwise(frame)
|
529 |
+
|
530 |
+
return frame
|
531 |
+
|
532 |
+
|
533 |
+
|
534 |
+
def process_face(self,face_index, target_face:Face, frame:Frame):
|
535 |
+
from roop.face_util import align_crop
|
536 |
+
|
537 |
+
enhanced_frame = None
|
538 |
+
if(len(self.input_face_datas) > 0):
|
539 |
+
inputface = self.input_face_datas[face_index].faces[0]
|
540 |
+
else:
|
541 |
+
inputface = None
|
542 |
+
|
543 |
+
rotation_action = None
|
544 |
+
if roop.globals.autorotate_faces:
|
545 |
+
# check for sideways rotation of face
|
546 |
+
rotation_action = self.rotation_action(target_face, frame)
|
547 |
+
if rotation_action is not None:
|
548 |
+
(startX, startY, endX, endY) = target_face["bbox"].astype("int")
|
549 |
+
width = endX - startX
|
550 |
+
height = endY - startY
|
551 |
+
offs = int(max(width,height) * 0.25)
|
552 |
+
rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs)
|
553 |
+
if rotation_action == "rotate_anticlockwise":
|
554 |
+
rotcutframe = rotate_anticlockwise(rotcutframe)
|
555 |
+
elif rotation_action == "rotate_clockwise":
|
556 |
+
rotcutframe = rotate_clockwise(rotcutframe)
|
557 |
+
# rotate image and re-detect face to correct wonky landmarks
|
558 |
+
rotface = get_first_face(rotcutframe)
|
559 |
+
if rotface is None:
|
560 |
+
rotation_action = None
|
561 |
+
else:
|
562 |
+
saved_frame = frame.copy()
|
563 |
+
frame = rotcutframe
|
564 |
+
target_face = rotface
|
565 |
+
|
566 |
+
|
567 |
+
|
568 |
+
# if roop.globals.vr_mode:
|
569 |
+
# bbox = target_face.bbox
|
570 |
+
# [orig_width, orig_height, _] = frame.shape
|
571 |
+
|
572 |
+
# # Convert bounding box to ints
|
573 |
+
# x1, y1, x2, y2 = map(int, bbox)
|
574 |
+
|
575 |
+
# # Determine the center of the bounding box
|
576 |
+
# x_center = (x1 + x2) / 2
|
577 |
+
# y_center = (y1 + y2) / 2
|
578 |
+
|
579 |
+
# # Normalize coordinates to range [-1, 1]
|
580 |
+
# x_center_normalized = x_center / (orig_width / 2) - 1
|
581 |
+
# y_center_normalized = y_center / (orig_width / 2) - 1
|
582 |
+
|
583 |
+
# # Convert normalized coordinates to spherical (theta, phi)
|
584 |
+
# theta = x_center_normalized * 180 # Theta ranges from -180 to 180 degrees
|
585 |
+
# phi = -y_center_normalized * 90 # Phi ranges from -90 to 90 degrees
|
586 |
+
|
587 |
+
# img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280) # Generate perspective image
|
588 |
+
|
589 |
+
|
590 |
+
""" Code ported/adapted from Facefusion which borrowed the idea from Rope:
|
591 |
+
Kind of subsampling the cutout and aligned face image and faceswapping slices of it up to
|
592 |
+
the desired output resolution. This works around the current resolution limitations without using enhancers.
|
593 |
+
"""
|
594 |
+
model_output_size = 128
|
595 |
+
subsample_size = self.options.subsample_size
|
596 |
+
subsample_total = subsample_size // model_output_size
|
597 |
+
aligned_img, M = align_crop(frame, target_face.kps, subsample_size)
|
598 |
+
|
599 |
+
fake_frame = aligned_img
|
600 |
+
target_face.matrix = M
|
601 |
+
|
602 |
+
for p in self.processors:
|
603 |
+
if p.type == 'swap':
|
604 |
+
swap_result_frames = []
|
605 |
+
subsample_frames = self.implode_pixel_boost(aligned_img, model_output_size, subsample_total)
|
606 |
+
for sliced_frame in subsample_frames:
|
607 |
+
for _ in range(0,self.options.num_swap_steps):
|
608 |
+
sliced_frame = self.prepare_crop_frame(sliced_frame)
|
609 |
+
sliced_frame = p.Run(inputface, target_face, sliced_frame)
|
610 |
+
sliced_frame = self.normalize_swap_frame(sliced_frame)
|
611 |
+
swap_result_frames.append(sliced_frame)
|
612 |
+
fake_frame = self.explode_pixel_boost(swap_result_frames, model_output_size, subsample_total, subsample_size)
|
613 |
+
fake_frame = fake_frame.astype(np.uint8)
|
614 |
+
scale_factor = 0.0
|
615 |
+
elif p.type == 'mask':
|
616 |
+
fake_frame = self.process_mask(p, aligned_img, fake_frame)
|
617 |
+
else:
|
618 |
+
enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
|
619 |
+
|
620 |
+
upscale = 512
|
621 |
+
orig_width = fake_frame.shape[1]
|
622 |
+
if orig_width != upscale:
|
623 |
+
fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
|
624 |
+
mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets
|
625 |
+
|
626 |
+
|
627 |
+
if enhanced_frame is None:
|
628 |
+
scale_factor = int(upscale / orig_width)
|
629 |
+
result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
|
630 |
+
else:
|
631 |
+
result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
|
632 |
+
|
633 |
+
# Restore mouth before unrotating
|
634 |
+
if self.options.restore_original_mouth:
|
635 |
+
mouth_cutout, mouth_bb = self.create_mouth_mask(target_face, frame)
|
636 |
+
result = self.apply_mouth_area(result, mouth_cutout, mouth_bb)
|
637 |
+
|
638 |
+
if rotation_action is not None:
|
639 |
+
fake_frame = self.auto_unrotate_frame(result, rotation_action)
|
640 |
+
result = self.paste_simple(fake_frame, saved_frame, startX, startY)
|
641 |
+
|
642 |
+
return result
|
643 |
+
|
644 |
+
|
645 |
+
|
646 |
+
|
647 |
+
def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
|
648 |
+
if start_x < 0:
|
649 |
+
start_x = 0
|
650 |
+
if start_y < 0:
|
651 |
+
start_y = 0
|
652 |
+
if end_x > frame.shape[1]:
|
653 |
+
end_x = frame.shape[1]
|
654 |
+
if end_y > frame.shape[0]:
|
655 |
+
end_y = frame.shape[0]
|
656 |
+
return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
|
657 |
+
|
658 |
+
def paste_simple(self, src:Frame, dest:Frame, start_x, start_y):
|
659 |
+
end_x = start_x + src.shape[1]
|
660 |
+
end_y = start_y + src.shape[0]
|
661 |
+
|
662 |
+
start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest)
|
663 |
+
dest[start_y:end_y, start_x:end_x] = src
|
664 |
+
return dest
|
665 |
+
|
666 |
+
def simple_blend_with_mask(self, image1, image2, mask):
|
667 |
+
# Blend the images
|
668 |
+
blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask
|
669 |
+
return blended_image.astype(np.uint8)
|
670 |
+
|
671 |
+
|
672 |
+
def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
|
673 |
+
M_scale = M * scale_factor
|
674 |
+
IM = cv2.invertAffineTransform(M_scale)
|
675 |
+
|
676 |
+
face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
|
677 |
+
# Generate white square sized as a upsk_face
|
678 |
+
img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8)
|
679 |
+
|
680 |
+
w = img_matte.shape[1]
|
681 |
+
h = img_matte.shape[0]
|
682 |
+
|
683 |
+
top = int(mask_offsets[0] * h)
|
684 |
+
bottom = int(h - (mask_offsets[1] * h))
|
685 |
+
left = int(mask_offsets[2] * w)
|
686 |
+
right = int(w - (mask_offsets[3] * w))
|
687 |
+
img_matte[top:bottom,left:right] = 255
|
688 |
+
|
689 |
+
# Transform white square back to target_img
|
690 |
+
img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
|
691 |
+
##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
|
692 |
+
img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
|
693 |
+
|
694 |
+
img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5])
|
695 |
+
#Normalize images to float values and reshape
|
696 |
+
img_matte = img_matte.astype(np.float32)/255
|
697 |
+
face_matte = face_matte.astype(np.float32)/255
|
698 |
+
img_matte = np.minimum(face_matte, img_matte)
|
699 |
+
if self.options.show_face_area_overlay:
|
700 |
+
# Additional steps for green overlay
|
701 |
+
green_overlay = np.zeros_like(target_img)
|
702 |
+
green_color = [0, 255, 0] # RGB for green
|
703 |
+
for i in range(3): # Apply green color where img_matte is not zero
|
704 |
+
green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0) ##Transform upcaled face back to target_img
|
705 |
+
img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
|
706 |
+
paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
|
707 |
+
if upsk_face is not fake_face:
|
708 |
+
fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
|
709 |
+
paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
|
710 |
+
|
711 |
+
# Re-assemble image
|
712 |
+
paste_face = img_matte * paste_face
|
713 |
+
paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
|
714 |
+
if self.options.show_face_area_overlay:
|
715 |
+
# Overlay the green overlay on the final image
|
716 |
+
paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0)
|
717 |
+
return paste_face.astype(np.uint8)
|
718 |
+
|
719 |
+
|
720 |
+
def blur_area(self, img_matte, num_erosion_iterations, blur_amount):
|
721 |
+
# Detect the affine transformed white area
|
722 |
+
mask_h_inds, mask_w_inds = np.where(img_matte==255)
|
723 |
+
# Calculate the size (and diagonal size) of transformed white area width and height boundaries
|
724 |
+
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
|
725 |
+
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
|
726 |
+
mask_size = int(np.sqrt(mask_h*mask_w))
|
727 |
+
# Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
|
728 |
+
# k = max(mask_size//12, 8)
|
729 |
+
k = max(mask_size//(blur_amount // 2) , blur_amount // 2)
|
730 |
+
kernel = np.ones((k,k),np.uint8)
|
731 |
+
img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations)
|
732 |
+
#Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
|
733 |
+
# k = max(mask_size//24, 4)
|
734 |
+
k = max(mask_size//blur_amount, blur_amount//5)
|
735 |
+
kernel_size = (k, k)
|
736 |
+
blur_size = tuple(2*i+1 for i in kernel_size)
|
737 |
+
return cv2.GaussianBlur(img_matte, blur_size, 0)
|
738 |
+
|
739 |
+
|
740 |
+
def prepare_crop_frame(self, swap_frame):
|
741 |
+
model_type = 'inswapper'
|
742 |
+
model_mean = [0.0, 0.0, 0.0]
|
743 |
+
model_standard_deviation = [1.0, 1.0, 1.0]
|
744 |
+
|
745 |
+
if model_type == 'ghost':
|
746 |
+
swap_frame = swap_frame[:, :, ::-1] / 127.5 - 1
|
747 |
+
else:
|
748 |
+
swap_frame = swap_frame[:, :, ::-1] / 255.0
|
749 |
+
swap_frame = (swap_frame - model_mean) / model_standard_deviation
|
750 |
+
swap_frame = swap_frame.transpose(2, 0, 1)
|
751 |
+
swap_frame = np.expand_dims(swap_frame, axis = 0).astype(np.float32)
|
752 |
+
return swap_frame
|
753 |
+
|
754 |
+
|
755 |
+
def normalize_swap_frame(self, swap_frame):
|
756 |
+
model_type = 'inswapper'
|
757 |
+
swap_frame = swap_frame.transpose(1, 2, 0)
|
758 |
+
|
759 |
+
if model_type == 'ghost':
|
760 |
+
swap_frame = (swap_frame * 127.5 + 127.5).round()
|
761 |
+
else:
|
762 |
+
swap_frame = (swap_frame * 255.0).round()
|
763 |
+
swap_frame = swap_frame[:, :, ::-1]
|
764 |
+
return swap_frame
|
765 |
+
|
766 |
+
def implode_pixel_boost(self, aligned_face_frame, model_size, pixel_boost_total : int):
|
767 |
+
subsample_frame = aligned_face_frame.reshape(model_size, pixel_boost_total, model_size, pixel_boost_total, 3)
|
768 |
+
subsample_frame = subsample_frame.transpose(1, 3, 0, 2, 4).reshape(pixel_boost_total ** 2, model_size, model_size, 3)
|
769 |
+
return subsample_frame
|
770 |
+
|
771 |
+
|
772 |
+
def explode_pixel_boost(self, subsample_frame, model_size, pixel_boost_total, pixel_boost_size):
|
773 |
+
final_frame = np.stack(subsample_frame, axis = 0).reshape(pixel_boost_total, pixel_boost_total, model_size, model_size, 3)
|
774 |
+
final_frame = final_frame.transpose(2, 0, 3, 1, 4).reshape(pixel_boost_size, pixel_boost_size, 3)
|
775 |
+
return final_frame
|
776 |
+
|
777 |
+
def process_mask(self, processor, frame:Frame, target:Frame):
|
778 |
+
img_mask = processor.Run(frame, self.options.masking_text)
|
779 |
+
img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
|
780 |
+
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
|
781 |
+
|
782 |
+
if self.options.show_face_masking:
|
783 |
+
result = (1 - img_mask) * frame.astype(np.float32)
|
784 |
+
return np.uint8(result)
|
785 |
+
|
786 |
+
|
787 |
+
target = target.astype(np.float32)
|
788 |
+
result = (1-img_mask) * target
|
789 |
+
result += img_mask * frame.astype(np.float32)
|
790 |
+
return np.uint8(result)
|
791 |
+
|
792 |
+
|
793 |
+
# Code for mouth restoration adapted from https://github.com/iVideoGameBoss/iRoopDeepFaceCam
|
794 |
+
|
795 |
+
def create_mouth_mask(self, face: Face, frame: Frame):
|
796 |
+
mouth_cutout = None
|
797 |
+
|
798 |
+
landmarks = face.landmark_2d_106
|
799 |
+
if landmarks is not None:
|
800 |
+
# Get mouth landmarks (indices 52 to 71 typically represent the outer mouth)
|
801 |
+
mouth_points = landmarks[52:71].astype(np.int32)
|
802 |
+
|
803 |
+
# Add padding to mouth area
|
804 |
+
min_x, min_y = np.min(mouth_points, axis=0)
|
805 |
+
max_x, max_y = np.max(mouth_points, axis=0)
|
806 |
+
min_x = max(0, min_x - (15*6))
|
807 |
+
min_y = max(0, min_y - 22)
|
808 |
+
max_x = min(frame.shape[1], max_x + (15*6))
|
809 |
+
max_y = min(frame.shape[0], max_y + (90*6))
|
810 |
+
|
811 |
+
# Extract the mouth area from the frame using the calculated bounding box
|
812 |
+
mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
|
813 |
+
|
814 |
+
return mouth_cutout, (min_x, min_y, max_x, max_y)
|
815 |
+
|
816 |
+
|
817 |
+
|
818 |
+
def create_feathered_mask(self, shape, feather_amount=30):
|
819 |
+
mask = np.zeros(shape[:2], dtype=np.float32)
|
820 |
+
center = (shape[1] // 2, shape[0] // 2)
|
821 |
+
cv2.ellipse(mask, center, (shape[1] // 2 - feather_amount, shape[0] // 2 - feather_amount),
|
822 |
+
0, 0, 360, 1, -1)
|
823 |
+
mask = cv2.GaussianBlur(mask, (feather_amount*2+1, feather_amount*2+1), 0)
|
824 |
+
return mask / np.max(mask)
|
825 |
+
|
826 |
+
def apply_mouth_area(self, frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple) -> np.ndarray:
|
827 |
+
min_x, min_y, max_x, max_y = mouth_box
|
828 |
+
box_width = max_x - min_x
|
829 |
+
box_height = max_y - min_y
|
830 |
+
|
831 |
+
|
832 |
+
# Resize the mouth cutout to match the mouth box size
|
833 |
+
if mouth_cutout is None or box_width is None or box_height is None:
|
834 |
+
return frame
|
835 |
+
try:
|
836 |
+
resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
|
837 |
+
|
838 |
+
# Extract the region of interest (ROI) from the target frame
|
839 |
+
roi = frame[min_y:max_y, min_x:max_x]
|
840 |
+
|
841 |
+
# Ensure the ROI and resized_mouth_cutout have the same shape
|
842 |
+
if roi.shape != resized_mouth_cutout.shape:
|
843 |
+
resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0]))
|
844 |
+
|
845 |
+
# Apply color transfer from ROI to mouth cutout
|
846 |
+
color_corrected_mouth = self.apply_color_transfer(resized_mouth_cutout, roi)
|
847 |
+
|
848 |
+
# Create a feathered mask with increased feather amount
|
849 |
+
feather_amount = min(30, box_width // 15, box_height // 15)
|
850 |
+
mask = self.create_feathered_mask(resized_mouth_cutout.shape, feather_amount)
|
851 |
+
|
852 |
+
# Blend the color-corrected mouth cutout with the ROI using the feathered mask
|
853 |
+
mask = mask[:,:,np.newaxis] # Add channel dimension to mask
|
854 |
+
blended = (color_corrected_mouth * mask + roi * (1 - mask)).astype(np.uint8)
|
855 |
+
|
856 |
+
# Place the blended result back into the frame
|
857 |
+
frame[min_y:max_y, min_x:max_x] = blended
|
858 |
+
except Exception as e:
|
859 |
+
print(f'Error {e}')
|
860 |
+
pass
|
861 |
+
|
862 |
+
return frame
|
863 |
+
|
864 |
+
def apply_color_transfer(self, source, target):
|
865 |
+
"""
|
866 |
+
Apply color transfer from target to source image
|
867 |
+
"""
|
868 |
+
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
|
869 |
+
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
|
870 |
+
|
871 |
+
source_mean, source_std = cv2.meanStdDev(source)
|
872 |
+
target_mean, target_std = cv2.meanStdDev(target)
|
873 |
+
|
874 |
+
# Reshape mean and std to be broadcastable
|
875 |
+
source_mean = source_mean.reshape(1, 1, 3)
|
876 |
+
source_std = source_std.reshape(1, 1, 3)
|
877 |
+
target_mean = target_mean.reshape(1, 1, 3)
|
878 |
+
target_std = target_std.reshape(1, 1, 3)
|
879 |
+
|
880 |
+
# Perform the color transfer
|
881 |
+
source = (source - source_mean) * (target_std / source_std) + target_mean
|
882 |
+
return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
|
883 |
+
|
884 |
+
|
885 |
+
|
886 |
+
def unload_models():
|
887 |
+
pass
|
888 |
+
|
889 |
+
|
890 |
+
def release_resources(self):
|
891 |
+
for p in self.processors:
|
892 |
+
p.Release()
|
893 |
+
self.processors.clear()
|
894 |
+
if self.videowriter is not None:
|
895 |
+
self.videowriter.close()
|
896 |
+
if self.streamwriter is not None:
|
897 |
+
self.streamwriter.Close()
|
898 |
+
|
roop/ProcessOptions.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class ProcessOptions:
|
2 |
+
|
3 |
+
def __init__(self, processordefines:dict, face_distance, blend_ratio, swap_mode, selected_index, masking_text, imagemask, num_steps, subsample_size, show_face_area, restore_original_mouth, show_mask=False):
|
4 |
+
self.processors = processordefines
|
5 |
+
self.face_distance_threshold = face_distance
|
6 |
+
self.blend_ratio = blend_ratio
|
7 |
+
self.swap_mode = swap_mode
|
8 |
+
self.selected_index = selected_index
|
9 |
+
self.masking_text = masking_text
|
10 |
+
self.imagemask = imagemask
|
11 |
+
self.num_swap_steps = num_steps
|
12 |
+
self.show_face_area_overlay = show_face_area
|
13 |
+
self.show_face_masking = show_mask
|
14 |
+
self.subsample_size = subsample_size
|
15 |
+
self.restore_original_mouth = restore_original_mouth
|
16 |
+
self.max_num_reuse_frame = 15
|
roop/StreamWriter.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import threading
|
2 |
+
import time
|
3 |
+
import pyvirtualcam
|
4 |
+
|
5 |
+
|
6 |
+
class StreamWriter():
|
7 |
+
FPS = 30
|
8 |
+
VCam = None
|
9 |
+
Active = False
|
10 |
+
THREAD_LOCK_STREAM = threading.Lock()
|
11 |
+
time_last_process = None
|
12 |
+
timespan_min = 0.0
|
13 |
+
|
14 |
+
def __enter__(self):
|
15 |
+
return self
|
16 |
+
|
17 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
18 |
+
self.Close()
|
19 |
+
|
20 |
+
def __init__(self, size, fps):
|
21 |
+
self.time_last_process = time.perf_counter()
|
22 |
+
self.FPS = fps
|
23 |
+
self.timespan_min = 1.0 / fps
|
24 |
+
print('Detecting virtual cam devices')
|
25 |
+
self.VCam = pyvirtualcam.Camera(width=size[0], height=size[1], fps=fps, fmt=pyvirtualcam.PixelFormat.BGR, print_fps=False)
|
26 |
+
if self.VCam is None:
|
27 |
+
print("No virtual camera found!")
|
28 |
+
return
|
29 |
+
print(f'Using virtual camera: {self.VCam.device}')
|
30 |
+
print(f'Using {self.VCam.native_fmt}')
|
31 |
+
self.Active = True
|
32 |
+
|
33 |
+
|
34 |
+
def LimitFrames(self):
|
35 |
+
while True:
|
36 |
+
current_time = time.perf_counter()
|
37 |
+
time_passed = current_time - self.time_last_process
|
38 |
+
if time_passed >= self.timespan_min:
|
39 |
+
break
|
40 |
+
|
41 |
+
# First version used a queue and threading. Surprisingly this
|
42 |
+
# totally simple, blocking version is 10 times faster!
|
43 |
+
def WriteToStream(self, frame):
|
44 |
+
if self.VCam is None:
|
45 |
+
return
|
46 |
+
with self.THREAD_LOCK_STREAM:
|
47 |
+
self.LimitFrames()
|
48 |
+
self.VCam.send(frame)
|
49 |
+
self.time_last_process = time.perf_counter()
|
50 |
+
|
51 |
+
|
52 |
+
def Close(self):
|
53 |
+
self.Active = False
|
54 |
+
if self.VCam is None:
|
55 |
+
self.VCam.close()
|
56 |
+
self.VCam = None
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
roop/__init__.py
ADDED
File without changes
|
roop/capturer.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from roop.typing import Frame
|
6 |
+
|
7 |
+
current_video_path = None
|
8 |
+
current_frame_total = 0
|
9 |
+
current_capture = None
|
10 |
+
|
11 |
+
def get_image_frame(filename: str):
|
12 |
+
try:
|
13 |
+
return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)
|
14 |
+
except:
|
15 |
+
print(f"Exception reading {filename}")
|
16 |
+
return None
|
17 |
+
|
18 |
+
|
19 |
+
def get_video_frame(video_path: str, frame_number: int = 0) -> Optional[Frame]:
|
20 |
+
global current_video_path, current_capture, current_frame_total
|
21 |
+
|
22 |
+
if video_path != current_video_path:
|
23 |
+
release_video()
|
24 |
+
current_capture = cv2.VideoCapture(video_path)
|
25 |
+
current_video_path = video_path
|
26 |
+
current_frame_total = current_capture.get(cv2.CAP_PROP_FRAME_COUNT)
|
27 |
+
|
28 |
+
current_capture.set(cv2.CAP_PROP_POS_FRAMES, min(current_frame_total, frame_number - 1))
|
29 |
+
has_frame, frame = current_capture.read()
|
30 |
+
if has_frame:
|
31 |
+
return frame
|
32 |
+
return None
|
33 |
+
|
34 |
+
def release_video():
|
35 |
+
global current_capture
|
36 |
+
|
37 |
+
if current_capture is not None:
|
38 |
+
current_capture.release()
|
39 |
+
current_capture = None
|
40 |
+
|
41 |
+
|
42 |
+
def get_video_frame_total(video_path: str) -> int:
|
43 |
+
capture = cv2.VideoCapture(video_path)
|
44 |
+
video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
45 |
+
capture.release()
|
46 |
+
return video_frame_total
|
roop/core.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import shutil
|
6 |
+
# single thread doubles cuda performance - needs to be set before torch import
|
7 |
+
if any(arg.startswith('--execution-provider') for arg in sys.argv):
|
8 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
9 |
+
|
10 |
+
import warnings
|
11 |
+
from typing import List
|
12 |
+
import platform
|
13 |
+
import signal
|
14 |
+
import torch
|
15 |
+
import onnxruntime
|
16 |
+
import pathlib
|
17 |
+
import argparse
|
18 |
+
|
19 |
+
from time import time
|
20 |
+
|
21 |
+
import roop.globals
|
22 |
+
import roop.metadata
|
23 |
+
import roop.utilities as util
|
24 |
+
import roop.util_ffmpeg as ffmpeg
|
25 |
+
import ui.main as main
|
26 |
+
from settings import Settings
|
27 |
+
from roop.face_util import extract_face_images
|
28 |
+
from roop.ProcessEntry import ProcessEntry
|
29 |
+
from roop.ProcessMgr import ProcessMgr
|
30 |
+
from roop.ProcessOptions import ProcessOptions
|
31 |
+
from roop.capturer import get_video_frame_total, release_video
|
32 |
+
|
33 |
+
|
34 |
+
clip_text = None
|
35 |
+
|
36 |
+
call_display_ui = None
|
37 |
+
|
38 |
+
process_mgr = None
|
39 |
+
|
40 |
+
|
41 |
+
if 'ROCMExecutionProvider' in roop.globals.execution_providers:
|
42 |
+
del torch
|
43 |
+
|
44 |
+
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
|
45 |
+
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
|
46 |
+
|
47 |
+
|
48 |
+
def parse_args() -> None:
|
49 |
+
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
|
50 |
+
roop.globals.headless = False
|
51 |
+
|
52 |
+
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
|
53 |
+
program.add_argument('--server_share', help='Public server', dest='server_share', action='store_true', default=False)
|
54 |
+
program.add_argument('--cuda_device_id', help='Index of the cuda gpu to use', dest='cuda_device_id', type=int, default=0)
|
55 |
+
roop.globals.startup_args = program.parse_args()
|
56 |
+
# Always enable all processors when using GUI
|
57 |
+
roop.globals.frame_processors = ['face_swapper', 'face_enhancer']
|
58 |
+
|
59 |
+
|
60 |
+
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
|
61 |
+
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
|
62 |
+
|
63 |
+
|
64 |
+
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
|
65 |
+
list_providers = [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
|
66 |
+
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
|
67 |
+
|
68 |
+
try:
|
69 |
+
for i in range(len(list_providers)):
|
70 |
+
if list_providers[i] == 'CUDAExecutionProvider':
|
71 |
+
list_providers[i] = ('CUDAExecutionProvider', {'device_id': roop.globals.cuda_device_id})
|
72 |
+
torch.cuda.set_device(roop.globals.cuda_device_id)
|
73 |
+
break
|
74 |
+
except:
|
75 |
+
pass
|
76 |
+
|
77 |
+
return list_providers
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
def suggest_max_memory() -> int:
|
82 |
+
if platform.system().lower() == 'darwin':
|
83 |
+
return 4
|
84 |
+
return 16
|
85 |
+
|
86 |
+
|
87 |
+
def suggest_execution_providers() -> List[str]:
|
88 |
+
return encode_execution_providers(onnxruntime.get_available_providers())
|
89 |
+
|
90 |
+
|
91 |
+
def suggest_execution_threads() -> int:
|
92 |
+
if 'DmlExecutionProvider' in roop.globals.execution_providers:
|
93 |
+
return 1
|
94 |
+
if 'ROCMExecutionProvider' in roop.globals.execution_providers:
|
95 |
+
return 1
|
96 |
+
return 8
|
97 |
+
|
98 |
+
|
99 |
+
def limit_resources() -> None:
|
100 |
+
# limit memory usage
|
101 |
+
if roop.globals.max_memory:
|
102 |
+
memory = roop.globals.max_memory * 1024 ** 3
|
103 |
+
if platform.system().lower() == 'darwin':
|
104 |
+
memory = roop.globals.max_memory * 1024 ** 6
|
105 |
+
if platform.system().lower() == 'windows':
|
106 |
+
import ctypes
|
107 |
+
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
|
108 |
+
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
|
109 |
+
else:
|
110 |
+
import resource
|
111 |
+
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
def release_resources() -> None:
|
116 |
+
import gc
|
117 |
+
global process_mgr
|
118 |
+
|
119 |
+
if process_mgr is not None:
|
120 |
+
process_mgr.release_resources()
|
121 |
+
process_mgr = None
|
122 |
+
|
123 |
+
gc.collect()
|
124 |
+
# if 'CUDAExecutionProvider' in roop.globals.execution_providers and torch.cuda.is_available():
|
125 |
+
# with torch.cuda.device('cuda'):
|
126 |
+
# torch.cuda.empty_cache()
|
127 |
+
# torch.cuda.ipc_collect()
|
128 |
+
|
129 |
+
|
130 |
+
def pre_check() -> bool:
|
131 |
+
if sys.version_info < (3, 9):
|
132 |
+
update_status('Python version is not supported - please upgrade to 3.9 or higher.')
|
133 |
+
return False
|
134 |
+
|
135 |
+
download_directory_path = util.resolve_relative_path('../models')
|
136 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
|
137 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GFPGANv1.4.onnx'])
|
138 |
+
util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth'])
|
139 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GPEN-BFR-512.onnx'])
|
140 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/restoreformer_plus_plus.onnx'])
|
141 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/xseg.onnx'])
|
142 |
+
download_directory_path = util.resolve_relative_path('../models/CLIP')
|
143 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/rd64-uni-refined.pth'])
|
144 |
+
download_directory_path = util.resolve_relative_path('../models/CodeFormer')
|
145 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/CodeFormerv0.1.onnx'])
|
146 |
+
download_directory_path = util.resolve_relative_path('../models/Frame')
|
147 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_artistic.onnx'])
|
148 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_stable.onnx'])
|
149 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/isnet-general-use.onnx'])
|
150 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x4.onnx'])
|
151 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x2.onnx'])
|
152 |
+
util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/lsdir_x4.onnx'])
|
153 |
+
|
154 |
+
if not shutil.which('ffmpeg'):
|
155 |
+
update_status('ffmpeg is not installed.')
|
156 |
+
return True
|
157 |
+
|
158 |
+
def set_display_ui(function):
|
159 |
+
global call_display_ui
|
160 |
+
|
161 |
+
call_display_ui = function
|
162 |
+
|
163 |
+
|
164 |
+
def update_status(message: str) -> None:
|
165 |
+
global call_display_ui
|
166 |
+
|
167 |
+
print(message)
|
168 |
+
if call_display_ui is not None:
|
169 |
+
call_display_ui(message)
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
def start() -> None:
|
175 |
+
if roop.globals.headless:
|
176 |
+
print('Headless mode currently unsupported - starting UI!')
|
177 |
+
# faces = extract_face_images(roop.globals.source_path, (False, 0))
|
178 |
+
# roop.globals.INPUT_FACES.append(faces[roop.globals.source_face_index])
|
179 |
+
# faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path)))
|
180 |
+
# roop.globals.TARGET_FACES.append(faces[roop.globals.target_face_index])
|
181 |
+
# if 'face_enhancer' in roop.globals.frame_processors:
|
182 |
+
# roop.globals.selected_enhancer = 'GFPGAN'
|
183 |
+
|
184 |
+
batch_process_regular(None, False, None)
|
185 |
+
|
186 |
+
|
187 |
+
def get_processing_plugins(masking_engine):
|
188 |
+
processors = { "faceswap": {}}
|
189 |
+
if masking_engine is not None:
|
190 |
+
processors.update({masking_engine: {}})
|
191 |
+
|
192 |
+
if roop.globals.selected_enhancer == 'GFPGAN':
|
193 |
+
processors.update({"gfpgan": {}})
|
194 |
+
elif roop.globals.selected_enhancer == 'Codeformer':
|
195 |
+
processors.update({"codeformer": {}})
|
196 |
+
elif roop.globals.selected_enhancer == 'DMDNet':
|
197 |
+
processors.update({"dmdnet": {}})
|
198 |
+
elif roop.globals.selected_enhancer == 'GPEN':
|
199 |
+
processors.update({"gpen": {}})
|
200 |
+
elif roop.globals.selected_enhancer == 'Restoreformer++':
|
201 |
+
processors.update({"restoreformer++": {}})
|
202 |
+
return processors
|
203 |
+
|
204 |
+
|
205 |
+
def live_swap(frame, options):
|
206 |
+
global process_mgr
|
207 |
+
|
208 |
+
if frame is None:
|
209 |
+
return frame
|
210 |
+
|
211 |
+
if process_mgr is None:
|
212 |
+
process_mgr = ProcessMgr(None)
|
213 |
+
|
214 |
+
# if len(roop.globals.INPUT_FACESETS) <= selected_index:
|
215 |
+
# selected_index = 0
|
216 |
+
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
|
217 |
+
newframe = process_mgr.process_frame(frame)
|
218 |
+
if newframe is None:
|
219 |
+
return frame
|
220 |
+
return newframe
|
221 |
+
|
222 |
+
|
223 |
+
def batch_process_regular(output_method, files:list[ProcessEntry], masking_engine:str, new_clip_text:str, use_new_method, imagemask, restore_original_mouth, num_swap_steps, progress, selected_index = 0) -> None:
|
224 |
+
global clip_text, process_mgr
|
225 |
+
|
226 |
+
release_resources()
|
227 |
+
limit_resources()
|
228 |
+
if process_mgr is None:
|
229 |
+
process_mgr = ProcessMgr(progress)
|
230 |
+
mask = imagemask["layers"][0] if imagemask is not None else None
|
231 |
+
if len(roop.globals.INPUT_FACESETS) <= selected_index:
|
232 |
+
selected_index = 0
|
233 |
+
options = ProcessOptions(get_processing_plugins(masking_engine), roop.globals.distance_threshold, roop.globals.blend_ratio,
|
234 |
+
roop.globals.face_swap_mode, selected_index, new_clip_text, mask, num_swap_steps,
|
235 |
+
roop.globals.subsample_size, False, restore_original_mouth)
|
236 |
+
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
|
237 |
+
batch_process(output_method, files, use_new_method)
|
238 |
+
return
|
239 |
+
|
240 |
+
def batch_process_with_options(files:list[ProcessEntry], options, progress):
|
241 |
+
global clip_text, process_mgr
|
242 |
+
|
243 |
+
release_resources()
|
244 |
+
limit_resources()
|
245 |
+
if process_mgr is None:
|
246 |
+
process_mgr = ProcessMgr(progress)
|
247 |
+
process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
|
248 |
+
roop.globals.keep_frames = False
|
249 |
+
roop.globals.wait_after_extraction = False
|
250 |
+
roop.globals.skip_audio = False
|
251 |
+
batch_process("Files", files, True)
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
def batch_process(output_method, files:list[ProcessEntry], use_new_method) -> None:
|
256 |
+
global clip_text, process_mgr
|
257 |
+
|
258 |
+
roop.globals.processing = True
|
259 |
+
|
260 |
+
# limit threads for some providers
|
261 |
+
max_threads = suggest_execution_threads()
|
262 |
+
if max_threads == 1:
|
263 |
+
roop.globals.execution_threads = 1
|
264 |
+
|
265 |
+
imagefiles:list[ProcessEntry] = []
|
266 |
+
videofiles:list[ProcessEntry] = []
|
267 |
+
|
268 |
+
update_status('Sorting videos/images')
|
269 |
+
|
270 |
+
|
271 |
+
for index, f in enumerate(files):
|
272 |
+
fullname = f.filename
|
273 |
+
if util.has_image_extension(fullname):
|
274 |
+
destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'.{roop.globals.CFG.output_image_format}')
|
275 |
+
destination = util.replace_template(destination, index=index)
|
276 |
+
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
|
277 |
+
f.finalname = destination
|
278 |
+
imagefiles.append(f)
|
279 |
+
|
280 |
+
elif util.is_video(fullname) or util.has_extension(fullname, ['gif']):
|
281 |
+
destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'__temp.{roop.globals.CFG.output_video_format}')
|
282 |
+
f.finalname = destination
|
283 |
+
videofiles.append(f)
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
if(len(imagefiles) > 0):
|
288 |
+
update_status('Processing image(s)')
|
289 |
+
origimages = []
|
290 |
+
fakeimages = []
|
291 |
+
for f in imagefiles:
|
292 |
+
origimages.append(f.filename)
|
293 |
+
fakeimages.append(f.finalname)
|
294 |
+
|
295 |
+
process_mgr.run_batch(origimages, fakeimages, roop.globals.execution_threads)
|
296 |
+
origimages.clear()
|
297 |
+
fakeimages.clear()
|
298 |
+
|
299 |
+
if(len(videofiles) > 0):
|
300 |
+
for index,v in enumerate(videofiles):
|
301 |
+
if not roop.globals.processing:
|
302 |
+
end_processing('Processing stopped!')
|
303 |
+
return
|
304 |
+
fps = v.fps if v.fps > 0 else util.detect_fps(v.filename)
|
305 |
+
if v.endframe == 0:
|
306 |
+
v.endframe = get_video_frame_total(v.filename)
|
307 |
+
|
308 |
+
is_streaming_only = output_method == "Virtual Camera"
|
309 |
+
if is_streaming_only == False:
|
310 |
+
update_status(f'Creating {os.path.basename(v.finalname)} with {fps} FPS...')
|
311 |
+
|
312 |
+
start_processing = time()
|
313 |
+
if is_streaming_only == False and roop.globals.keep_frames or not use_new_method:
|
314 |
+
util.create_temp(v.filename)
|
315 |
+
update_status('Extracting frames...')
|
316 |
+
ffmpeg.extract_frames(v.filename,v.startframe,v.endframe, fps)
|
317 |
+
if not roop.globals.processing:
|
318 |
+
end_processing('Processing stopped!')
|
319 |
+
return
|
320 |
+
|
321 |
+
temp_frame_paths = util.get_temp_frame_paths(v.filename)
|
322 |
+
process_mgr.run_batch(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads)
|
323 |
+
if not roop.globals.processing:
|
324 |
+
end_processing('Processing stopped!')
|
325 |
+
return
|
326 |
+
if roop.globals.wait_after_extraction:
|
327 |
+
extract_path = os.path.dirname(temp_frame_paths[0])
|
328 |
+
util.open_folder(extract_path)
|
329 |
+
input("Press any key to continue...")
|
330 |
+
print("Resorting frames to create video")
|
331 |
+
util.sort_rename_frames(extract_path)
|
332 |
+
|
333 |
+
ffmpeg.create_video(v.filename, v.finalname, fps)
|
334 |
+
if not roop.globals.keep_frames:
|
335 |
+
util.delete_temp_frames(temp_frame_paths[0])
|
336 |
+
else:
|
337 |
+
if util.has_extension(v.filename, ['gif']):
|
338 |
+
skip_audio = True
|
339 |
+
else:
|
340 |
+
skip_audio = roop.globals.skip_audio
|
341 |
+
process_mgr.run_batch_inmem(output_method, v.filename, v.finalname, v.startframe, v.endframe, fps,roop.globals.execution_threads)
|
342 |
+
|
343 |
+
if not roop.globals.processing:
|
344 |
+
end_processing('Processing stopped!')
|
345 |
+
return
|
346 |
+
|
347 |
+
video_file_name = v.finalname
|
348 |
+
if os.path.isfile(video_file_name):
|
349 |
+
destination = ''
|
350 |
+
if util.has_extension(v.filename, ['gif']):
|
351 |
+
gifname = util.get_destfilename_from_path(v.filename, roop.globals.output_path, '.gif')
|
352 |
+
destination = util.replace_template(gifname, index=index)
|
353 |
+
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
|
354 |
+
|
355 |
+
update_status('Creating final GIF')
|
356 |
+
ffmpeg.create_gif_from_video(video_file_name, destination)
|
357 |
+
if os.path.isfile(destination):
|
358 |
+
os.remove(video_file_name)
|
359 |
+
else:
|
360 |
+
skip_audio = roop.globals.skip_audio
|
361 |
+
destination = util.replace_template(video_file_name, index=index)
|
362 |
+
pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
|
363 |
+
|
364 |
+
if not skip_audio:
|
365 |
+
ffmpeg.restore_audio(video_file_name, v.filename, v.startframe, v.endframe, destination)
|
366 |
+
if os.path.isfile(destination):
|
367 |
+
os.remove(video_file_name)
|
368 |
+
else:
|
369 |
+
shutil.move(video_file_name, destination)
|
370 |
+
|
371 |
+
elif is_streaming_only == False:
|
372 |
+
update_status(f'Failed processing {os.path.basename(v.finalname)}!')
|
373 |
+
elapsed_time = time() - start_processing
|
374 |
+
average_fps = (v.endframe - v.startframe) / elapsed_time
|
375 |
+
update_status(f'\nProcessing {os.path.basename(destination)} took {elapsed_time:.2f} secs, {average_fps:.2f} frames/s')
|
376 |
+
end_processing('Finished')
|
377 |
+
|
378 |
+
|
379 |
+
def end_processing(msg:str):
|
380 |
+
update_status(msg)
|
381 |
+
roop.globals.target_folder_path = None
|
382 |
+
release_resources()
|
383 |
+
|
384 |
+
|
385 |
+
def destroy() -> None:
|
386 |
+
if roop.globals.target_path:
|
387 |
+
util.clean_temp(roop.globals.target_path)
|
388 |
+
release_resources()
|
389 |
+
sys.exit()
|
390 |
+
|
391 |
+
|
392 |
+
def run() -> None:
|
393 |
+
parse_args()
|
394 |
+
if not pre_check():
|
395 |
+
return
|
396 |
+
roop.globals.CFG = Settings('config.yaml')
|
397 |
+
roop.globals.cuda_device_id = roop.globals.startup_args.cuda_device_id
|
398 |
+
roop.globals.execution_threads = roop.globals.CFG.max_threads
|
399 |
+
roop.globals.video_encoder = roop.globals.CFG.output_video_codec
|
400 |
+
roop.globals.video_quality = roop.globals.CFG.video_quality
|
401 |
+
roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None
|
402 |
+
if roop.globals.startup_args.server_share:
|
403 |
+
roop.globals.CFG.server_share = True
|
404 |
+
main.run()
|
roop/face_util.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import threading
|
2 |
+
from typing import Any
|
3 |
+
import insightface
|
4 |
+
|
5 |
+
import roop.globals
|
6 |
+
from roop.typing import Frame, Face
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
from skimage import transform as trans
|
11 |
+
from roop.capturer import get_video_frame
|
12 |
+
from roop.utilities import resolve_relative_path, conditional_thread_semaphore
|
13 |
+
|
14 |
+
FACE_ANALYSER = None
|
15 |
+
#THREAD_LOCK_ANALYSER = threading.Lock()
|
16 |
+
#THREAD_LOCK_SWAPPER = threading.Lock()
|
17 |
+
FACE_SWAPPER = None
|
18 |
+
|
19 |
+
|
20 |
+
def get_face_analyser() -> Any:
|
21 |
+
global FACE_ANALYSER
|
22 |
+
|
23 |
+
with conditional_thread_semaphore():
|
24 |
+
if FACE_ANALYSER is None or roop.globals.g_current_face_analysis != roop.globals.g_desired_face_analysis:
|
25 |
+
model_path = resolve_relative_path('..')
|
26 |
+
# removed genderage
|
27 |
+
allowed_modules = roop.globals.g_desired_face_analysis
|
28 |
+
roop.globals.g_current_face_analysis = roop.globals.g_desired_face_analysis
|
29 |
+
if roop.globals.CFG.force_cpu:
|
30 |
+
print("Forcing CPU for Face Analysis")
|
31 |
+
FACE_ANALYSER = insightface.app.FaceAnalysis(
|
32 |
+
name="buffalo_l",
|
33 |
+
root=model_path, providers=["CPUExecutionProvider"],allowed_modules=allowed_modules
|
34 |
+
)
|
35 |
+
else:
|
36 |
+
FACE_ANALYSER = insightface.app.FaceAnalysis(
|
37 |
+
name="buffalo_l", root=model_path, providers=roop.globals.execution_providers,allowed_modules=allowed_modules
|
38 |
+
)
|
39 |
+
FACE_ANALYSER.prepare(
|
40 |
+
ctx_id=0,
|
41 |
+
det_size=(640, 640) if roop.globals.default_det_size else (320, 320),
|
42 |
+
)
|
43 |
+
return FACE_ANALYSER
|
44 |
+
|
45 |
+
|
46 |
+
def get_first_face(frame: Frame) -> Any:
|
47 |
+
try:
|
48 |
+
faces = get_face_analyser().get(frame)
|
49 |
+
return min(faces, key=lambda x: x.bbox[0])
|
50 |
+
# return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0]
|
51 |
+
except:
|
52 |
+
return None
|
53 |
+
|
54 |
+
|
55 |
+
def get_all_faces(frame: Frame) -> Any:
|
56 |
+
try:
|
57 |
+
faces = get_face_analyser().get(frame)
|
58 |
+
return sorted(faces, key=lambda x: x.bbox[0])
|
59 |
+
except:
|
60 |
+
return None
|
61 |
+
|
62 |
+
|
63 |
+
def extract_face_images(source_filename, video_info, extra_padding=-1.0):
|
64 |
+
face_data = []
|
65 |
+
source_image = None
|
66 |
+
|
67 |
+
if video_info[0]:
|
68 |
+
frame = get_video_frame(source_filename, video_info[1])
|
69 |
+
if frame is not None:
|
70 |
+
source_image = frame
|
71 |
+
else:
|
72 |
+
return face_data
|
73 |
+
else:
|
74 |
+
source_image = cv2.imdecode(np.fromfile(source_filename, dtype=np.uint8), cv2.IMREAD_COLOR)
|
75 |
+
|
76 |
+
faces = get_all_faces(source_image)
|
77 |
+
if faces is None:
|
78 |
+
return face_data
|
79 |
+
|
80 |
+
i = 0
|
81 |
+
for face in faces:
|
82 |
+
(startX, startY, endX, endY) = face["bbox"].astype("int")
|
83 |
+
startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
|
84 |
+
if extra_padding > 0.0:
|
85 |
+
if source_image.shape[:2] == (512, 512):
|
86 |
+
i += 1
|
87 |
+
face_data.append([face, source_image])
|
88 |
+
continue
|
89 |
+
|
90 |
+
found = False
|
91 |
+
for i in range(1, 3):
|
92 |
+
(startX, startY, endX, endY) = face["bbox"].astype("int")
|
93 |
+
startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
|
94 |
+
cutout_padding = extra_padding
|
95 |
+
# top needs extra room for detection
|
96 |
+
padding = int((endY - startY) * cutout_padding)
|
97 |
+
oldY = startY
|
98 |
+
startY -= padding
|
99 |
+
|
100 |
+
factor = 0.25 if i == 1 else 0.5
|
101 |
+
cutout_padding = factor
|
102 |
+
padding = int((endY - oldY) * cutout_padding)
|
103 |
+
endY += padding
|
104 |
+
padding = int((endX - startX) * cutout_padding)
|
105 |
+
startX -= padding
|
106 |
+
endX += padding
|
107 |
+
startX, endX, startY, endY = clamp_cut_values(
|
108 |
+
startX, endX, startY, endY, source_image
|
109 |
+
)
|
110 |
+
face_temp = source_image[startY:endY, startX:endX]
|
111 |
+
face_temp = resize_image_keep_content(face_temp)
|
112 |
+
testfaces = get_all_faces(face_temp)
|
113 |
+
if testfaces is not None and len(testfaces) > 0:
|
114 |
+
i += 1
|
115 |
+
face_data.append([testfaces[0], face_temp])
|
116 |
+
found = True
|
117 |
+
break
|
118 |
+
|
119 |
+
if not found:
|
120 |
+
print("No face found after resizing, this shouldn't happen!")
|
121 |
+
continue
|
122 |
+
|
123 |
+
face_temp = source_image[startY:endY, startX:endX]
|
124 |
+
if face_temp.size < 1:
|
125 |
+
continue
|
126 |
+
|
127 |
+
i += 1
|
128 |
+
face_data.append([face, face_temp])
|
129 |
+
return face_data
|
130 |
+
|
131 |
+
|
132 |
+
def clamp_cut_values(startX, endX, startY, endY, image):
|
133 |
+
if startX < 0:
|
134 |
+
startX = 0
|
135 |
+
if endX > image.shape[1]:
|
136 |
+
endX = image.shape[1]
|
137 |
+
if startY < 0:
|
138 |
+
startY = 0
|
139 |
+
if endY > image.shape[0]:
|
140 |
+
endY = image.shape[0]
|
141 |
+
return startX, endX, startY, endY
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
def face_offset_top(face: Face, offset):
|
146 |
+
face["bbox"][1] += offset
|
147 |
+
face["bbox"][3] += offset
|
148 |
+
lm106 = face.landmark_2d_106
|
149 |
+
add = np.full_like(lm106, [0, offset])
|
150 |
+
face["landmark_2d_106"] = lm106 + add
|
151 |
+
return face
|
152 |
+
|
153 |
+
|
154 |
+
def resize_image_keep_content(image, new_width=512, new_height=512):
|
155 |
+
dim = None
|
156 |
+
(h, w) = image.shape[:2]
|
157 |
+
if h > w:
|
158 |
+
r = new_height / float(h)
|
159 |
+
dim = (int(w * r), new_height)
|
160 |
+
else:
|
161 |
+
# Calculate the ratio of the width and construct the dimensions
|
162 |
+
r = new_width / float(w)
|
163 |
+
dim = (new_width, int(h * r))
|
164 |
+
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
|
165 |
+
(h, w) = image.shape[:2]
|
166 |
+
if h == new_height and w == new_width:
|
167 |
+
return image
|
168 |
+
resize_img = np.zeros(shape=(new_height, new_width, 3), dtype=image.dtype)
|
169 |
+
offs = (new_width - w) if h == new_height else (new_height - h)
|
170 |
+
startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1
|
171 |
+
offs = int(offs // 2)
|
172 |
+
|
173 |
+
if h == new_height:
|
174 |
+
resize_img[0:new_height, startoffs : new_width - offs] = image
|
175 |
+
else:
|
176 |
+
resize_img[startoffs : new_height - offs, 0:new_width] = image
|
177 |
+
return resize_img
|
178 |
+
|
179 |
+
|
180 |
+
def rotate_image_90(image, rotate=True):
|
181 |
+
if rotate:
|
182 |
+
return np.rot90(image)
|
183 |
+
else:
|
184 |
+
return np.rot90(image, 1, (1, 0))
|
185 |
+
|
186 |
+
|
187 |
+
def rotate_anticlockwise(frame):
|
188 |
+
return rotate_image_90(frame)
|
189 |
+
|
190 |
+
|
191 |
+
def rotate_clockwise(frame):
|
192 |
+
return rotate_image_90(frame, False)
|
193 |
+
|
194 |
+
|
195 |
+
def rotate_image_180(image):
|
196 |
+
return np.flip(image, 0)
|
197 |
+
|
198 |
+
|
199 |
+
# alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py
|
200 |
+
|
201 |
+
arcface_dst = np.array(
|
202 |
+
[
|
203 |
+
[38.2946, 51.6963],
|
204 |
+
[73.5318, 51.5014],
|
205 |
+
[56.0252, 71.7366],
|
206 |
+
[41.5493, 92.3655],
|
207 |
+
[70.7299, 92.2041],
|
208 |
+
],
|
209 |
+
dtype=np.float32,
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
def estimate_norm(lmk, image_size=112):
|
214 |
+
assert lmk.shape == (5, 2)
|
215 |
+
if image_size % 112 == 0:
|
216 |
+
ratio = float(image_size) / 112.0
|
217 |
+
diff_x = 0
|
218 |
+
elif image_size % 128 == 0:
|
219 |
+
ratio = float(image_size) / 128.0
|
220 |
+
diff_x = 8.0 * ratio
|
221 |
+
elif image_size % 512 == 0:
|
222 |
+
ratio = float(image_size) / 512.0
|
223 |
+
diff_x = 32.0 * ratio
|
224 |
+
|
225 |
+
dst = arcface_dst * ratio
|
226 |
+
dst[:, 0] += diff_x
|
227 |
+
tform = trans.SimilarityTransform()
|
228 |
+
tform.estimate(lmk, dst)
|
229 |
+
M = tform.params[0:2, :]
|
230 |
+
return M
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
# aligned, M = norm_crop2(f[1], face.kps, 512)
|
235 |
+
def align_crop(img, landmark, image_size=112, mode="arcface"):
|
236 |
+
M = estimate_norm(landmark, image_size)
|
237 |
+
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
238 |
+
return warped, M
|
239 |
+
|
240 |
+
|
241 |
+
def square_crop(im, S):
|
242 |
+
if im.shape[0] > im.shape[1]:
|
243 |
+
height = S
|
244 |
+
width = int(float(im.shape[1]) / im.shape[0] * S)
|
245 |
+
scale = float(S) / im.shape[0]
|
246 |
+
else:
|
247 |
+
width = S
|
248 |
+
height = int(float(im.shape[0]) / im.shape[1] * S)
|
249 |
+
scale = float(S) / im.shape[1]
|
250 |
+
resized_im = cv2.resize(im, (width, height))
|
251 |
+
det_im = np.zeros((S, S, 3), dtype=np.uint8)
|
252 |
+
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im
|
253 |
+
return det_im, scale
|
254 |
+
|
255 |
+
|
256 |
+
def transform(data, center, output_size, scale, rotation):
|
257 |
+
scale_ratio = scale
|
258 |
+
rot = float(rotation) * np.pi / 180.0
|
259 |
+
# translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
|
260 |
+
t1 = trans.SimilarityTransform(scale=scale_ratio)
|
261 |
+
cx = center[0] * scale_ratio
|
262 |
+
cy = center[1] * scale_ratio
|
263 |
+
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
|
264 |
+
t3 = trans.SimilarityTransform(rotation=rot)
|
265 |
+
t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2))
|
266 |
+
t = t1 + t2 + t3 + t4
|
267 |
+
M = t.params[0:2]
|
268 |
+
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
|
269 |
+
return cropped, M
|
270 |
+
|
271 |
+
|
272 |
+
def trans_points2d(pts, M):
|
273 |
+
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
274 |
+
for i in range(pts.shape[0]):
|
275 |
+
pt = pts[i]
|
276 |
+
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
|
277 |
+
new_pt = np.dot(M, new_pt)
|
278 |
+
# print('new_pt', new_pt.shape, new_pt)
|
279 |
+
new_pts[i] = new_pt[0:2]
|
280 |
+
|
281 |
+
return new_pts
|
282 |
+
|
283 |
+
|
284 |
+
def trans_points3d(pts, M):
|
285 |
+
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
|
286 |
+
# print(scale)
|
287 |
+
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
288 |
+
for i in range(pts.shape[0]):
|
289 |
+
pt = pts[i]
|
290 |
+
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
|
291 |
+
new_pt = np.dot(M, new_pt)
|
292 |
+
# print('new_pt', new_pt.shape, new_pt)
|
293 |
+
new_pts[i][0:2] = new_pt[0:2]
|
294 |
+
new_pts[i][2] = pts[i][2] * scale
|
295 |
+
|
296 |
+
return new_pts
|
297 |
+
|
298 |
+
|
299 |
+
def trans_points(pts, M):
|
300 |
+
if pts.shape[1] == 2:
|
301 |
+
return trans_points2d(pts, M)
|
302 |
+
else:
|
303 |
+
return trans_points3d(pts, M)
|
304 |
+
|
305 |
+
def create_blank_image(width, height):
|
306 |
+
img = np.zeros((height, width, 4), dtype=np.uint8)
|
307 |
+
img[:] = [0,0,0,0]
|
308 |
+
return img
|
309 |
+
|
roop/ffmpeg_writer.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
FFMPEG_Writer - write set of frames to video file
|
3 |
+
|
4 |
+
original from
|
5 |
+
https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_writer.py
|
6 |
+
|
7 |
+
removed unnecessary dependencies
|
8 |
+
|
9 |
+
The MIT License (MIT)
|
10 |
+
|
11 |
+
Copyright (c) 2015 Zulko
|
12 |
+
Copyright (c) 2023 Janvarev Vladislav
|
13 |
+
"""
|
14 |
+
|
15 |
+
import os
|
16 |
+
import subprocess as sp
|
17 |
+
|
18 |
+
PIPE = -1
|
19 |
+
STDOUT = -2
|
20 |
+
DEVNULL = -3
|
21 |
+
|
22 |
+
FFMPEG_BINARY = "ffmpeg"
|
23 |
+
|
24 |
+
class FFMPEG_VideoWriter:
|
25 |
+
""" A class for FFMPEG-based video writing.
|
26 |
+
|
27 |
+
A class to write videos using ffmpeg. ffmpeg will write in a large
|
28 |
+
choice of formats.
|
29 |
+
|
30 |
+
Parameters
|
31 |
+
-----------
|
32 |
+
|
33 |
+
filename
|
34 |
+
Any filename like 'video.mp4' etc. but if you want to avoid
|
35 |
+
complications it is recommended to use the generic extension
|
36 |
+
'.avi' for all your videos.
|
37 |
+
|
38 |
+
size
|
39 |
+
Size (width,height) of the output video in pixels.
|
40 |
+
|
41 |
+
fps
|
42 |
+
Frames per second in the output video file.
|
43 |
+
|
44 |
+
codec
|
45 |
+
FFMPEG codec. It seems that in terms of quality the hierarchy is
|
46 |
+
'rawvideo' = 'png' > 'mpeg4' > 'libx264'
|
47 |
+
'png' manages the same lossless quality as 'rawvideo' but yields
|
48 |
+
smaller files. Type ``ffmpeg -codecs`` in a terminal to get a list
|
49 |
+
of accepted codecs.
|
50 |
+
|
51 |
+
Note for default 'libx264': by default the pixel format yuv420p
|
52 |
+
is used. If the video dimensions are not both even (e.g. 720x405)
|
53 |
+
another pixel format is used, and this can cause problem in some
|
54 |
+
video readers.
|
55 |
+
|
56 |
+
audiofile
|
57 |
+
Optional: The name of an audio file that will be incorporated
|
58 |
+
to the video.
|
59 |
+
|
60 |
+
preset
|
61 |
+
Sets the time that FFMPEG will take to compress the video. The slower,
|
62 |
+
the better the compression rate. Possibilities are: ultrafast,superfast,
|
63 |
+
veryfast, faster, fast, medium (default), slow, slower, veryslow,
|
64 |
+
placebo.
|
65 |
+
|
66 |
+
bitrate
|
67 |
+
Only relevant for codecs which accept a bitrate. "5000k" offers
|
68 |
+
nice results in general.
|
69 |
+
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, filename, size, fps, codec="libx265", crf=14, audiofile=None,
|
73 |
+
preset="medium", bitrate=None,
|
74 |
+
logfile=None, threads=None, ffmpeg_params=None):
|
75 |
+
|
76 |
+
if logfile is None:
|
77 |
+
logfile = sp.PIPE
|
78 |
+
|
79 |
+
self.filename = filename
|
80 |
+
self.codec = codec
|
81 |
+
self.ext = self.filename.split(".")[-1]
|
82 |
+
w = size[0] - 1 if size[0] % 2 != 0 else size[0]
|
83 |
+
h = size[1] - 1 if size[1] % 2 != 0 else size[1]
|
84 |
+
|
85 |
+
|
86 |
+
# order is important
|
87 |
+
cmd = [
|
88 |
+
FFMPEG_BINARY,
|
89 |
+
'-hide_banner',
|
90 |
+
'-hwaccel', 'auto',
|
91 |
+
'-y',
|
92 |
+
'-loglevel', 'error' if logfile == sp.PIPE else 'info',
|
93 |
+
'-f', 'rawvideo',
|
94 |
+
'-vcodec', 'rawvideo',
|
95 |
+
'-s', '%dx%d' % (size[0], size[1]),
|
96 |
+
#'-pix_fmt', 'rgba' if withmask else 'rgb24',
|
97 |
+
'-pix_fmt', 'bgr24',
|
98 |
+
'-r', str(fps),
|
99 |
+
'-an', '-i', '-'
|
100 |
+
]
|
101 |
+
|
102 |
+
if audiofile is not None:
|
103 |
+
cmd.extend([
|
104 |
+
'-i', audiofile,
|
105 |
+
'-acodec', 'copy'
|
106 |
+
])
|
107 |
+
|
108 |
+
cmd.extend([
|
109 |
+
'-vcodec', codec,
|
110 |
+
'-crf', str(crf)
|
111 |
+
#'-preset', preset,
|
112 |
+
])
|
113 |
+
if ffmpeg_params is not None:
|
114 |
+
cmd.extend(ffmpeg_params)
|
115 |
+
if bitrate is not None:
|
116 |
+
cmd.extend([
|
117 |
+
'-b', bitrate
|
118 |
+
])
|
119 |
+
|
120 |
+
# scale to a resolution divisible by 2 if not even
|
121 |
+
cmd.extend(['-vf', f'scale={w}:{h}' if w != size[0] or h != size[1] else 'colorspace=bt709:iall=bt601-6-625:fast=1'])
|
122 |
+
|
123 |
+
if threads is not None:
|
124 |
+
cmd.extend(["-threads", str(threads)])
|
125 |
+
|
126 |
+
cmd.extend([
|
127 |
+
'-pix_fmt', 'yuv420p',
|
128 |
+
|
129 |
+
])
|
130 |
+
cmd.extend([
|
131 |
+
filename
|
132 |
+
])
|
133 |
+
|
134 |
+
test = str(cmd)
|
135 |
+
print(test)
|
136 |
+
|
137 |
+
popen_params = {"stdout": DEVNULL,
|
138 |
+
"stderr": logfile,
|
139 |
+
"stdin": sp.PIPE}
|
140 |
+
|
141 |
+
# This was added so that no extra unwanted window opens on windows
|
142 |
+
# when the child process is created
|
143 |
+
if os.name == "nt":
|
144 |
+
popen_params["creationflags"] = 0x08000000 # CREATE_NO_WINDOW
|
145 |
+
|
146 |
+
self.proc = sp.Popen(cmd, **popen_params)
|
147 |
+
|
148 |
+
|
149 |
+
def write_frame(self, img_array):
|
150 |
+
""" Writes one frame in the file."""
|
151 |
+
try:
|
152 |
+
#if PY3:
|
153 |
+
self.proc.stdin.write(img_array.tobytes())
|
154 |
+
# else:
|
155 |
+
# self.proc.stdin.write(img_array.tostring())
|
156 |
+
except IOError as err:
|
157 |
+
_, ffmpeg_error = self.proc.communicate()
|
158 |
+
error = (str(err) + ("\n\nroop unleashed error: FFMPEG encountered "
|
159 |
+
"the following error while writing file %s:"
|
160 |
+
"\n\n %s" % (self.filename, str(ffmpeg_error))))
|
161 |
+
|
162 |
+
if b"Unknown encoder" in ffmpeg_error:
|
163 |
+
|
164 |
+
error = error+("\n\nThe video export "
|
165 |
+
"failed because FFMPEG didn't find the specified "
|
166 |
+
"codec for video encoding (%s). Please install "
|
167 |
+
"this codec or change the codec when calling "
|
168 |
+
"write_videofile. For instance:\n"
|
169 |
+
" >>> clip.write_videofile('myvid.webm', codec='libvpx')")%(self.codec)
|
170 |
+
|
171 |
+
elif b"incorrect codec parameters ?" in ffmpeg_error:
|
172 |
+
|
173 |
+
error = error+("\n\nThe video export "
|
174 |
+
"failed, possibly because the codec specified for "
|
175 |
+
"the video (%s) is not compatible with the given "
|
176 |
+
"extension (%s). Please specify a valid 'codec' "
|
177 |
+
"argument in write_videofile. This would be 'libx264' "
|
178 |
+
"or 'mpeg4' for mp4, 'libtheora' for ogv, 'libvpx for webm. "
|
179 |
+
"Another possible reason is that the audio codec was not "
|
180 |
+
"compatible with the video codec. For instance the video "
|
181 |
+
"extensions 'ogv' and 'webm' only allow 'libvorbis' (default) as a"
|
182 |
+
"video codec."
|
183 |
+
)%(self.codec, self.ext)
|
184 |
+
|
185 |
+
elif b"encoder setup failed" in ffmpeg_error:
|
186 |
+
|
187 |
+
error = error+("\n\nThe video export "
|
188 |
+
"failed, possibly because the bitrate you specified "
|
189 |
+
"was too high or too low for the video codec.")
|
190 |
+
|
191 |
+
elif b"Invalid encoder type" in ffmpeg_error:
|
192 |
+
|
193 |
+
error = error + ("\n\nThe video export failed because the codec "
|
194 |
+
"or file extension you provided is not a video")
|
195 |
+
|
196 |
+
|
197 |
+
raise IOError(error)
|
198 |
+
|
199 |
+
def close(self):
|
200 |
+
if self.proc:
|
201 |
+
self.proc.stdin.close()
|
202 |
+
if self.proc.stderr is not None:
|
203 |
+
self.proc.stderr.close()
|
204 |
+
self.proc.wait()
|
205 |
+
|
206 |
+
self.proc = None
|
207 |
+
|
208 |
+
# Support the Context Manager protocol, to ensure that resources are cleaned up.
|
209 |
+
|
210 |
+
def __enter__(self):
|
211 |
+
return self
|
212 |
+
|
213 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
214 |
+
self.close()
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
roop/globals.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from settings import Settings
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
source_path = None
|
5 |
+
target_path = None
|
6 |
+
output_path = None
|
7 |
+
target_folder_path = None
|
8 |
+
startup_args = None
|
9 |
+
|
10 |
+
cuda_device_id = 0
|
11 |
+
frame_processors: List[str] = []
|
12 |
+
keep_fps = None
|
13 |
+
keep_frames = None
|
14 |
+
autorotate_faces = None
|
15 |
+
vr_mode = None
|
16 |
+
skip_audio = None
|
17 |
+
wait_after_extraction = None
|
18 |
+
many_faces = None
|
19 |
+
use_batch = None
|
20 |
+
source_face_index = 0
|
21 |
+
target_face_index = 0
|
22 |
+
face_position = None
|
23 |
+
video_encoder = None
|
24 |
+
video_quality = None
|
25 |
+
max_memory = None
|
26 |
+
execution_providers: List[str] = []
|
27 |
+
execution_threads = None
|
28 |
+
headless = None
|
29 |
+
log_level = 'error'
|
30 |
+
selected_enhancer = None
|
31 |
+
subsample_size = 128
|
32 |
+
face_swap_mode = None
|
33 |
+
blend_ratio = 0.5
|
34 |
+
distance_threshold = 0.65
|
35 |
+
default_det_size = True
|
36 |
+
|
37 |
+
no_face_action = 0
|
38 |
+
|
39 |
+
processing = False
|
40 |
+
|
41 |
+
g_current_face_analysis = None
|
42 |
+
g_desired_face_analysis = None
|
43 |
+
|
44 |
+
FACE_ENHANCER = None
|
45 |
+
|
46 |
+
INPUT_FACESETS = []
|
47 |
+
TARGET_FACES = []
|
48 |
+
|
49 |
+
|
50 |
+
IMAGE_CHAIN_PROCESSOR = None
|
51 |
+
VIDEO_CHAIN_PROCESSOR = None
|
52 |
+
BATCH_IMAGE_CHAIN_PROCESSOR = None
|
53 |
+
|
54 |
+
CFG: Settings = None
|
55 |
+
|
56 |
+
|
roop/metadata.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
name = 'roop unleashed'
|
2 |
+
version = '4.3.3'
|
roop/processors/Enhance_CodeFormer.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Callable
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime
|
5 |
+
import roop.globals
|
6 |
+
|
7 |
+
from roop.typing import Face, Frame, FaceSet
|
8 |
+
from roop.utilities import resolve_relative_path
|
9 |
+
|
10 |
+
class Enhance_CodeFormer():
|
11 |
+
model_codeformer = None
|
12 |
+
|
13 |
+
plugin_options:dict = None
|
14 |
+
|
15 |
+
processorname = 'codeformer'
|
16 |
+
type = 'enhance'
|
17 |
+
|
18 |
+
|
19 |
+
def Initialize(self, plugin_options:dict):
|
20 |
+
if self.plugin_options is not None:
|
21 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
22 |
+
self.Release()
|
23 |
+
|
24 |
+
self.plugin_options = plugin_options
|
25 |
+
if self.model_codeformer is None:
|
26 |
+
# replace Mac mps with cpu for the moment
|
27 |
+
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
|
28 |
+
model_path = resolve_relative_path('../models/CodeFormer/CodeFormerv0.1.onnx')
|
29 |
+
self.model_codeformer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
|
30 |
+
self.model_inputs = self.model_codeformer.get_inputs()
|
31 |
+
model_outputs = self.model_codeformer.get_outputs()
|
32 |
+
self.io_binding = self.model_codeformer.io_binding()
|
33 |
+
self.io_binding.bind_cpu_input(self.model_inputs[1].name, np.array([0.5]))
|
34 |
+
self.io_binding.bind_output(model_outputs[0].name, self.devicename)
|
35 |
+
|
36 |
+
|
37 |
+
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
|
38 |
+
input_size = temp_frame.shape[1]
|
39 |
+
# preprocess
|
40 |
+
temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
|
41 |
+
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
42 |
+
temp_frame = temp_frame.astype('float32') / 255.0
|
43 |
+
temp_frame = (temp_frame - 0.5) / 0.5
|
44 |
+
temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
|
45 |
+
|
46 |
+
self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame.astype(np.float32))
|
47 |
+
self.model_codeformer.run_with_iobinding(self.io_binding)
|
48 |
+
ort_outs = self.io_binding.copy_outputs_to_cpu()
|
49 |
+
result = ort_outs[0][0]
|
50 |
+
del ort_outs
|
51 |
+
|
52 |
+
# post-process
|
53 |
+
result = result.transpose((1, 2, 0))
|
54 |
+
|
55 |
+
un_min = -1.0
|
56 |
+
un_max = 1.0
|
57 |
+
result = np.clip(result, un_min, un_max)
|
58 |
+
result = (result - un_min) / (un_max - un_min)
|
59 |
+
|
60 |
+
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
|
61 |
+
result = (result * 255.0).round()
|
62 |
+
scale_factor = int(result.shape[1] / input_size)
|
63 |
+
return result.astype(np.uint8), scale_factor
|
64 |
+
|
65 |
+
|
66 |
+
def Release(self):
|
67 |
+
del self.model_codeformer
|
68 |
+
self.model_codeformer = None
|
69 |
+
del self.io_binding
|
70 |
+
self.io_binding = None
|
71 |
+
|
roop/processors/Enhance_DMDNet.py
ADDED
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Callable
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.nn.utils.spectral_norm as SpectralNorm
|
8 |
+
import threading
|
9 |
+
from torchvision.ops import roi_align
|
10 |
+
|
11 |
+
from math import sqrt
|
12 |
+
|
13 |
+
from torchvision.transforms.functional import normalize
|
14 |
+
|
15 |
+
from roop.typing import Face, Frame, FaceSet
|
16 |
+
|
17 |
+
|
18 |
+
THREAD_LOCK_DMDNET = threading.Lock()
|
19 |
+
|
20 |
+
|
21 |
+
class Enhance_DMDNet():
|
22 |
+
plugin_options:dict = None
|
23 |
+
model_dmdnet = None
|
24 |
+
torchdevice = None
|
25 |
+
|
26 |
+
processorname = 'dmdnet'
|
27 |
+
type = 'enhance'
|
28 |
+
|
29 |
+
|
30 |
+
def Initialize(self, plugin_options:dict):
|
31 |
+
if self.plugin_options is not None:
|
32 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
33 |
+
self.Release()
|
34 |
+
|
35 |
+
self.plugin_options = plugin_options
|
36 |
+
if self.model_dmdnet is None:
|
37 |
+
self.model_dmdnet = self.create(self.plugin_options["devicename"])
|
38 |
+
|
39 |
+
|
40 |
+
# temp_frame already cropped+aligned, bbox not
|
41 |
+
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
|
42 |
+
input_size = temp_frame.shape[1]
|
43 |
+
|
44 |
+
result = self.enhance_face(source_faceset, temp_frame, target_face)
|
45 |
+
scale_factor = int(result.shape[1] / input_size)
|
46 |
+
return result.astype(np.uint8), scale_factor
|
47 |
+
|
48 |
+
|
49 |
+
def Release(self):
|
50 |
+
self.model_gfpgan = None
|
51 |
+
|
52 |
+
|
53 |
+
# https://stackoverflow.com/a/67174339
|
54 |
+
def landmarks106_to_68(self, pt106):
|
55 |
+
map106to68=[1,10,12,14,16,3,5,7,0,23,21,19,32,30,28,26,17,
|
56 |
+
43,48,49,51,50,
|
57 |
+
102,103,104,105,101,
|
58 |
+
72,73,74,86,78,79,80,85,84,
|
59 |
+
35,41,42,39,37,36,
|
60 |
+
89,95,96,93,91,90,
|
61 |
+
52,64,63,71,67,68,61,58,59,53,56,55,65,66,62,70,69,57,60,54
|
62 |
+
]
|
63 |
+
|
64 |
+
pt68 = []
|
65 |
+
for i in range(68):
|
66 |
+
index = map106to68[i]
|
67 |
+
pt68.append(pt106[index])
|
68 |
+
return pt68
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def check_bbox(self, imgs, boxes):
|
74 |
+
boxes = boxes.view(-1, 4, 4)
|
75 |
+
colors = [(0, 255, 0), (0, 255, 0), (255, 255, 0), (255, 0, 0)]
|
76 |
+
i = 0
|
77 |
+
for img, box in zip(imgs, boxes):
|
78 |
+
img = (img + 1)/2 * 255
|
79 |
+
img2 = img.permute(1, 2, 0).float().cpu().flip(2).numpy().copy()
|
80 |
+
for idx, point in enumerate(box):
|
81 |
+
cv2.rectangle(img2, (int(point[0]), int(point[1])), (int(point[2]), int(point[3])), color=colors[idx], thickness=2)
|
82 |
+
cv2.imwrite('dmdnet_{:02d}.png'.format(i), img2)
|
83 |
+
i += 1
|
84 |
+
|
85 |
+
|
86 |
+
def trans_points2d(self, pts, M):
|
87 |
+
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
88 |
+
for i in range(pts.shape[0]):
|
89 |
+
pt = pts[i]
|
90 |
+
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
|
91 |
+
new_pt = np.dot(M, new_pt)
|
92 |
+
new_pts[i] = new_pt[0:2]
|
93 |
+
|
94 |
+
return new_pts
|
95 |
+
|
96 |
+
|
97 |
+
def enhance_face(self, ref_faceset: FaceSet, temp_frame, face: Face):
|
98 |
+
# preprocess
|
99 |
+
start_x, start_y, end_x, end_y = map(int, face['bbox'])
|
100 |
+
lm106 = face.landmark_2d_106
|
101 |
+
lq_landmarks = np.asarray(self.landmarks106_to_68(lm106))
|
102 |
+
|
103 |
+
if temp_frame.shape[0] != 512 or temp_frame.shape[1] != 512:
|
104 |
+
# scale to 512x512
|
105 |
+
scale_factor = 512 / temp_frame.shape[1]
|
106 |
+
|
107 |
+
M = face.matrix * scale_factor
|
108 |
+
|
109 |
+
lq_landmarks = self.trans_points2d(lq_landmarks, M)
|
110 |
+
temp_frame = cv2.resize(temp_frame, (512,512), interpolation = cv2.INTER_AREA)
|
111 |
+
|
112 |
+
if temp_frame.ndim == 2:
|
113 |
+
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG
|
114 |
+
# else:
|
115 |
+
# temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB
|
116 |
+
|
117 |
+
lq = read_img_tensor(temp_frame)
|
118 |
+
|
119 |
+
LQLocs = get_component_location(lq_landmarks)
|
120 |
+
# self.check_bbox(lq, LQLocs.unsqueeze(0))
|
121 |
+
|
122 |
+
# specific, change 1000 to 1 to activate
|
123 |
+
if len(ref_faceset.faces) > 1:
|
124 |
+
SpecificImgs = []
|
125 |
+
SpecificLocs = []
|
126 |
+
for i,face in enumerate(ref_faceset.faces):
|
127 |
+
lm106 = face.landmark_2d_106
|
128 |
+
lq_landmarks = np.asarray(self.landmarks106_to_68(lm106))
|
129 |
+
ref_image = ref_faceset.ref_images[i]
|
130 |
+
if ref_image.shape[0] != 512 or ref_image.shape[1] != 512:
|
131 |
+
# scale to 512x512
|
132 |
+
scale_factor = 512 / ref_image.shape[1]
|
133 |
+
|
134 |
+
M = face.matrix * scale_factor
|
135 |
+
|
136 |
+
lq_landmarks = self.trans_points2d(lq_landmarks, M)
|
137 |
+
ref_image = cv2.resize(ref_image, (512,512), interpolation = cv2.INTER_AREA)
|
138 |
+
|
139 |
+
if ref_image.ndim == 2:
|
140 |
+
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG
|
141 |
+
# else:
|
142 |
+
# temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB
|
143 |
+
|
144 |
+
ref_tensor = read_img_tensor(ref_image)
|
145 |
+
ref_locs = get_component_location(lq_landmarks)
|
146 |
+
# self.check_bbox(ref_tensor, ref_locs.unsqueeze(0))
|
147 |
+
|
148 |
+
SpecificImgs.append(ref_tensor)
|
149 |
+
SpecificLocs.append(ref_locs.unsqueeze(0))
|
150 |
+
|
151 |
+
SpecificImgs = torch.cat(SpecificImgs, dim=0)
|
152 |
+
SpecificLocs = torch.cat(SpecificLocs, dim=0)
|
153 |
+
# check_bbox(SpecificImgs, SpecificLocs)
|
154 |
+
SpMem256, SpMem128, SpMem64 = self.model_dmdnet.generate_specific_dictionary(sp_imgs = SpecificImgs.to(self.torchdevice), sp_locs = SpecificLocs)
|
155 |
+
SpMem256Para = {}
|
156 |
+
SpMem128Para = {}
|
157 |
+
SpMem64Para = {}
|
158 |
+
for k, v in SpMem256.items():
|
159 |
+
SpMem256Para[k] = v
|
160 |
+
for k, v in SpMem128.items():
|
161 |
+
SpMem128Para[k] = v
|
162 |
+
for k, v in SpMem64.items():
|
163 |
+
SpMem64Para[k] = v
|
164 |
+
else:
|
165 |
+
# generic
|
166 |
+
SpMem256Para, SpMem128Para, SpMem64Para = None, None, None
|
167 |
+
|
168 |
+
with torch.no_grad():
|
169 |
+
with THREAD_LOCK_DMDNET:
|
170 |
+
try:
|
171 |
+
GenericResult, SpecificResult = self.model_dmdnet(lq = lq.to(self.torchdevice), loc = LQLocs.unsqueeze(0), sp_256 = SpMem256Para, sp_128 = SpMem128Para, sp_64 = SpMem64Para)
|
172 |
+
except Exception as e:
|
173 |
+
print(f'Error {e} there may be something wrong with the detected component locations.')
|
174 |
+
return temp_frame
|
175 |
+
|
176 |
+
if SpecificResult is not None:
|
177 |
+
save_specific = SpecificResult * 0.5 + 0.5
|
178 |
+
save_specific = save_specific.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
|
179 |
+
save_specific = np.clip(save_specific.float().cpu().numpy(), 0, 1) * 255.0
|
180 |
+
temp_frame = save_specific.astype("uint8")
|
181 |
+
if False:
|
182 |
+
save_generic = GenericResult * 0.5 + 0.5
|
183 |
+
save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
|
184 |
+
save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0
|
185 |
+
check_lq = lq * 0.5 + 0.5
|
186 |
+
check_lq = check_lq.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
|
187 |
+
check_lq = np.clip(check_lq.float().cpu().numpy(), 0, 1) * 255.0
|
188 |
+
cv2.imwrite('dmdnet_comparison.png', cv2.cvtColor(np.hstack((check_lq, save_generic, save_specific)),cv2.COLOR_RGB2BGR))
|
189 |
+
else:
|
190 |
+
save_generic = GenericResult * 0.5 + 0.5
|
191 |
+
save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
|
192 |
+
save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0
|
193 |
+
temp_frame = save_generic.astype("uint8")
|
194 |
+
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_RGB2BGR) # RGB
|
195 |
+
return temp_frame
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
def create(self, devicename):
|
200 |
+
self.torchdevice = torch.device(devicename)
|
201 |
+
model_dmdnet = DMDNet().to(self.torchdevice)
|
202 |
+
weights = torch.load('./models/DMDNet.pth')
|
203 |
+
model_dmdnet.load_state_dict(weights, strict=True)
|
204 |
+
|
205 |
+
model_dmdnet.eval()
|
206 |
+
num_params = 0
|
207 |
+
for param in model_dmdnet.parameters():
|
208 |
+
num_params += param.numel()
|
209 |
+
return model_dmdnet
|
210 |
+
|
211 |
+
# print('{:>8s} : {}'.format('Using device', device))
|
212 |
+
# print('{:>8s} : {:.2f}M'.format('Model params', num_params/1e6))
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
def read_img_tensor(Img=None): #rgb -1~1
|
217 |
+
Img = Img.transpose((2, 0, 1))/255.0
|
218 |
+
Img = torch.from_numpy(Img).float()
|
219 |
+
normalize(Img, [0.5,0.5,0.5], [0.5,0.5,0.5], inplace=True)
|
220 |
+
ImgTensor = Img.unsqueeze(0)
|
221 |
+
return ImgTensor
|
222 |
+
|
223 |
+
|
224 |
+
def get_component_location(Landmarks, re_read=False):
|
225 |
+
if re_read:
|
226 |
+
ReadLandmark = []
|
227 |
+
with open(Landmarks,'r') as f:
|
228 |
+
for line in f:
|
229 |
+
tmp = [float(i) for i in line.split(' ') if i != '\n']
|
230 |
+
ReadLandmark.append(tmp)
|
231 |
+
ReadLandmark = np.array(ReadLandmark) #
|
232 |
+
Landmarks = np.reshape(ReadLandmark, [-1, 2]) # 68*2
|
233 |
+
Map_LE_B = list(np.hstack((range(17,22), range(36,42))))
|
234 |
+
Map_RE_B = list(np.hstack((range(22,27), range(42,48))))
|
235 |
+
Map_LE = list(range(36,42))
|
236 |
+
Map_RE = list(range(42,48))
|
237 |
+
Map_NO = list(range(29,36))
|
238 |
+
Map_MO = list(range(48,68))
|
239 |
+
|
240 |
+
Landmarks[Landmarks>504]=504
|
241 |
+
Landmarks[Landmarks<8]=8
|
242 |
+
|
243 |
+
#left eye
|
244 |
+
Mean_LE = np.mean(Landmarks[Map_LE],0)
|
245 |
+
L_LE1 = Mean_LE[1] - np.min(Landmarks[Map_LE_B,1])
|
246 |
+
L_LE1 = L_LE1 * 1.3
|
247 |
+
L_LE2 = L_LE1 / 1.9
|
248 |
+
L_LE_xy = L_LE1 + L_LE2
|
249 |
+
L_LE_lt = [L_LE_xy/2, L_LE1]
|
250 |
+
L_LE_rb = [L_LE_xy/2, L_LE2]
|
251 |
+
Location_LE = np.hstack((Mean_LE - L_LE_lt + 1, Mean_LE + L_LE_rb)).astype(int)
|
252 |
+
|
253 |
+
#right eye
|
254 |
+
Mean_RE = np.mean(Landmarks[Map_RE],0)
|
255 |
+
L_RE1 = Mean_RE[1] - np.min(Landmarks[Map_RE_B,1])
|
256 |
+
L_RE1 = L_RE1 * 1.3
|
257 |
+
L_RE2 = L_RE1 / 1.9
|
258 |
+
L_RE_xy = L_RE1 + L_RE2
|
259 |
+
L_RE_lt = [L_RE_xy/2, L_RE1]
|
260 |
+
L_RE_rb = [L_RE_xy/2, L_RE2]
|
261 |
+
Location_RE = np.hstack((Mean_RE - L_RE_lt + 1, Mean_RE + L_RE_rb)).astype(int)
|
262 |
+
|
263 |
+
#nose
|
264 |
+
Mean_NO = np.mean(Landmarks[Map_NO],0)
|
265 |
+
L_NO1 =( np.max([Mean_NO[0] - Landmarks[31][0], Landmarks[35][0] - Mean_NO[0]])) * 1.25
|
266 |
+
L_NO2 = (Landmarks[33][1] - Mean_NO[1]) * 1.1
|
267 |
+
L_NO_xy = L_NO1 * 2
|
268 |
+
L_NO_lt = [L_NO_xy/2, L_NO_xy - L_NO2]
|
269 |
+
L_NO_rb = [L_NO_xy/2, L_NO2]
|
270 |
+
Location_NO = np.hstack((Mean_NO - L_NO_lt + 1, Mean_NO + L_NO_rb)).astype(int)
|
271 |
+
|
272 |
+
#mouth
|
273 |
+
Mean_MO = np.mean(Landmarks[Map_MO],0)
|
274 |
+
L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16)) * 1.1
|
275 |
+
MO_O = Mean_MO - L_MO + 1
|
276 |
+
MO_T = Mean_MO + L_MO
|
277 |
+
MO_T[MO_T>510]=510
|
278 |
+
Location_MO = np.hstack((MO_O, MO_T)).astype(int)
|
279 |
+
return torch.cat([torch.FloatTensor(Location_LE).unsqueeze(0), torch.FloatTensor(Location_RE).unsqueeze(0), torch.FloatTensor(Location_NO).unsqueeze(0), torch.FloatTensor(Location_MO).unsqueeze(0)], dim=0)
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
def calc_mean_std_4D(feat, eps=1e-5):
|
285 |
+
# eps is a small value added to the variance to avoid divide-by-zero.
|
286 |
+
size = feat.size()
|
287 |
+
assert (len(size) == 4)
|
288 |
+
N, C = size[:2]
|
289 |
+
feat_var = feat.view(N, C, -1).var(dim=2) + eps
|
290 |
+
feat_std = feat_var.sqrt().view(N, C, 1, 1)
|
291 |
+
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
|
292 |
+
return feat_mean, feat_std
|
293 |
+
|
294 |
+
def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature
|
295 |
+
size = content_feat.size()
|
296 |
+
style_mean, style_std = calc_mean_std_4D(style_feat)
|
297 |
+
content_mean, content_std = calc_mean_std_4D(content_feat)
|
298 |
+
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
299 |
+
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
300 |
+
|
301 |
+
|
302 |
+
def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True):
|
303 |
+
return nn.Sequential(
|
304 |
+
SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
|
305 |
+
nn.LeakyReLU(0.2),
|
306 |
+
SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
class MSDilateBlock(nn.Module):
|
311 |
+
def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True):
|
312 |
+
super(MSDilateBlock, self).__init__()
|
313 |
+
self.conv1 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias)
|
314 |
+
self.conv2 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias)
|
315 |
+
self.conv3 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias)
|
316 |
+
self.conv4 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias)
|
317 |
+
self.convi = SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias))
|
318 |
+
def forward(self, x):
|
319 |
+
conv1 = self.conv1(x)
|
320 |
+
conv2 = self.conv2(x)
|
321 |
+
conv3 = self.conv3(x)
|
322 |
+
conv4 = self.conv4(x)
|
323 |
+
cat = torch.cat([conv1, conv2, conv3, conv4], 1)
|
324 |
+
out = self.convi(cat) + x
|
325 |
+
return out
|
326 |
+
|
327 |
+
|
328 |
+
class AdaptiveInstanceNorm(nn.Module):
|
329 |
+
def __init__(self, in_channel):
|
330 |
+
super().__init__()
|
331 |
+
self.norm = nn.InstanceNorm2d(in_channel)
|
332 |
+
|
333 |
+
def forward(self, input, style):
|
334 |
+
style_mean, style_std = calc_mean_std_4D(style)
|
335 |
+
out = self.norm(input)
|
336 |
+
size = input.size()
|
337 |
+
out = style_std.expand(size) * out + style_mean.expand(size)
|
338 |
+
return out
|
339 |
+
|
340 |
+
class NoiseInjection(nn.Module):
|
341 |
+
def __init__(self, channel):
|
342 |
+
super().__init__()
|
343 |
+
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
|
344 |
+
def forward(self, image, noise):
|
345 |
+
if noise is None:
|
346 |
+
b, c, h, w = image.shape
|
347 |
+
noise = image.new_empty(b, 1, h, w).normal_()
|
348 |
+
return image + self.weight * noise
|
349 |
+
|
350 |
+
class StyledUpBlock(nn.Module):
|
351 |
+
def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False, noise_inject=False):
|
352 |
+
super().__init__()
|
353 |
+
|
354 |
+
self.noise_inject = noise_inject
|
355 |
+
if upsample:
|
356 |
+
self.conv1 = nn.Sequential(
|
357 |
+
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
|
358 |
+
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
|
359 |
+
nn.LeakyReLU(0.2),
|
360 |
+
)
|
361 |
+
else:
|
362 |
+
self.conv1 = nn.Sequential(
|
363 |
+
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
|
364 |
+
nn.LeakyReLU(0.2),
|
365 |
+
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
|
366 |
+
)
|
367 |
+
self.convup = nn.Sequential(
|
368 |
+
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
|
369 |
+
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
|
370 |
+
nn.LeakyReLU(0.2),
|
371 |
+
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
|
372 |
+
)
|
373 |
+
if self.noise_inject:
|
374 |
+
self.noise1 = NoiseInjection(out_channel)
|
375 |
+
|
376 |
+
self.lrelu1 = nn.LeakyReLU(0.2)
|
377 |
+
|
378 |
+
self.ScaleModel1 = nn.Sequential(
|
379 |
+
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
|
380 |
+
nn.LeakyReLU(0.2),
|
381 |
+
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))
|
382 |
+
)
|
383 |
+
self.ShiftModel1 = nn.Sequential(
|
384 |
+
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
|
385 |
+
nn.LeakyReLU(0.2),
|
386 |
+
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)),
|
387 |
+
)
|
388 |
+
|
389 |
+
def forward(self, input, style):
|
390 |
+
out = self.conv1(input)
|
391 |
+
out = self.lrelu1(out)
|
392 |
+
Shift1 = self.ShiftModel1(style)
|
393 |
+
Scale1 = self.ScaleModel1(style)
|
394 |
+
out = out * Scale1 + Shift1
|
395 |
+
if self.noise_inject:
|
396 |
+
out = self.noise1(out, noise=None)
|
397 |
+
outup = self.convup(out)
|
398 |
+
return outup
|
399 |
+
|
400 |
+
|
401 |
+
####################################################################
|
402 |
+
###############Face Dictionary Generator
|
403 |
+
####################################################################
|
404 |
+
def AttentionBlock(in_channel):
|
405 |
+
return nn.Sequential(
|
406 |
+
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
|
407 |
+
nn.LeakyReLU(0.2),
|
408 |
+
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
|
409 |
+
)
|
410 |
+
|
411 |
+
class DilateResBlock(nn.Module):
|
412 |
+
def __init__(self, dim, dilation=[5,3] ):
|
413 |
+
super(DilateResBlock, self).__init__()
|
414 |
+
self.Res = nn.Sequential(
|
415 |
+
SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[0], dilation[0])),
|
416 |
+
nn.LeakyReLU(0.2),
|
417 |
+
SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[1], dilation[1])),
|
418 |
+
)
|
419 |
+
def forward(self, x):
|
420 |
+
out = x + self.Res(x)
|
421 |
+
return out
|
422 |
+
|
423 |
+
|
424 |
+
class KeyValue(nn.Module):
|
425 |
+
def __init__(self, indim, keydim, valdim):
|
426 |
+
super(KeyValue, self).__init__()
|
427 |
+
self.Key = nn.Sequential(
|
428 |
+
SpectralNorm(nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
|
429 |
+
nn.LeakyReLU(0.2),
|
430 |
+
SpectralNorm(nn.Conv2d(keydim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
|
431 |
+
)
|
432 |
+
self.Value = nn.Sequential(
|
433 |
+
SpectralNorm(nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
|
434 |
+
nn.LeakyReLU(0.2),
|
435 |
+
SpectralNorm(nn.Conv2d(valdim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
|
436 |
+
)
|
437 |
+
def forward(self, x):
|
438 |
+
return self.Key(x), self.Value(x)
|
439 |
+
|
440 |
+
class MaskAttention(nn.Module):
|
441 |
+
def __init__(self, indim):
|
442 |
+
super(MaskAttention, self).__init__()
|
443 |
+
self.conv1 = nn.Sequential(
|
444 |
+
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
|
445 |
+
nn.LeakyReLU(0.2),
|
446 |
+
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
|
447 |
+
)
|
448 |
+
self.conv2 = nn.Sequential(
|
449 |
+
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
|
450 |
+
nn.LeakyReLU(0.2),
|
451 |
+
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
|
452 |
+
)
|
453 |
+
self.conv3 = nn.Sequential(
|
454 |
+
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
|
455 |
+
nn.LeakyReLU(0.2),
|
456 |
+
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
|
457 |
+
)
|
458 |
+
self.convCat = nn.Sequential(
|
459 |
+
SpectralNorm(nn.Conv2d(indim//3 * 3, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
|
460 |
+
nn.LeakyReLU(0.2),
|
461 |
+
SpectralNorm(nn.Conv2d(indim, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
|
462 |
+
)
|
463 |
+
def forward(self, x, y, z):
|
464 |
+
c1 = self.conv1(x)
|
465 |
+
c2 = self.conv2(y)
|
466 |
+
c3 = self.conv3(z)
|
467 |
+
return self.convCat(torch.cat([c1,c2,c3], dim=1))
|
468 |
+
|
469 |
+
class Query(nn.Module):
|
470 |
+
def __init__(self, indim, quedim):
|
471 |
+
super(Query, self).__init__()
|
472 |
+
self.Query = nn.Sequential(
|
473 |
+
SpectralNorm(nn.Conv2d(indim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
|
474 |
+
nn.LeakyReLU(0.2),
|
475 |
+
SpectralNorm(nn.Conv2d(quedim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
|
476 |
+
)
|
477 |
+
def forward(self, x):
|
478 |
+
return self.Query(x)
|
479 |
+
|
480 |
+
def roi_align_self(input, location, target_size):
|
481 |
+
test = (target_size.item(),target_size.item())
|
482 |
+
return torch.cat([F.interpolate(input[i:i+1,:,location[i,1]:location[i,3],location[i,0]:location[i,2]],test,mode='bilinear',align_corners=False) for i in range(input.size(0))],0)
|
483 |
+
|
484 |
+
class FeatureExtractor(nn.Module):
|
485 |
+
def __init__(self, ngf = 64, key_scale = 4):#
|
486 |
+
super().__init__()
|
487 |
+
|
488 |
+
self.key_scale = 4
|
489 |
+
self.part_sizes = np.array([80,80,50,110]) #
|
490 |
+
self.feature_sizes = np.array([256,128,64]) #
|
491 |
+
|
492 |
+
self.conv1 = nn.Sequential(
|
493 |
+
SpectralNorm(nn.Conv2d(3, ngf, 3, 2, 1)),
|
494 |
+
nn.LeakyReLU(0.2),
|
495 |
+
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
|
496 |
+
)
|
497 |
+
self.conv2 = nn.Sequential(
|
498 |
+
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
|
499 |
+
nn.LeakyReLU(0.2),
|
500 |
+
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1))
|
501 |
+
)
|
502 |
+
self.res1 = DilateResBlock(ngf, [5,3])
|
503 |
+
self.res2 = DilateResBlock(ngf, [5,3])
|
504 |
+
|
505 |
+
|
506 |
+
self.conv3 = nn.Sequential(
|
507 |
+
SpectralNorm(nn.Conv2d(ngf, ngf*2, 3, 2, 1)),
|
508 |
+
nn.LeakyReLU(0.2),
|
509 |
+
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
|
510 |
+
)
|
511 |
+
self.conv4 = nn.Sequential(
|
512 |
+
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
|
513 |
+
nn.LeakyReLU(0.2),
|
514 |
+
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1))
|
515 |
+
)
|
516 |
+
self.res3 = DilateResBlock(ngf*2, [3,1])
|
517 |
+
self.res4 = DilateResBlock(ngf*2, [3,1])
|
518 |
+
|
519 |
+
self.conv5 = nn.Sequential(
|
520 |
+
SpectralNorm(nn.Conv2d(ngf*2, ngf*4, 3, 2, 1)),
|
521 |
+
nn.LeakyReLU(0.2),
|
522 |
+
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
|
523 |
+
)
|
524 |
+
self.conv6 = nn.Sequential(
|
525 |
+
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
|
526 |
+
nn.LeakyReLU(0.2),
|
527 |
+
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1))
|
528 |
+
)
|
529 |
+
self.res5 = DilateResBlock(ngf*4, [1,1])
|
530 |
+
self.res6 = DilateResBlock(ngf*4, [1,1])
|
531 |
+
|
532 |
+
self.LE_256_Q = Query(ngf, ngf // self.key_scale)
|
533 |
+
self.RE_256_Q = Query(ngf, ngf // self.key_scale)
|
534 |
+
self.MO_256_Q = Query(ngf, ngf // self.key_scale)
|
535 |
+
self.LE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
|
536 |
+
self.RE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
|
537 |
+
self.MO_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
|
538 |
+
self.LE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
|
539 |
+
self.RE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
|
540 |
+
self.MO_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
|
541 |
+
|
542 |
+
|
543 |
+
def forward(self, img, locs):
|
544 |
+
le_location = locs[:,0,:].int().cpu().numpy()
|
545 |
+
re_location = locs[:,1,:].int().cpu().numpy()
|
546 |
+
no_location = locs[:,2,:].int().cpu().numpy()
|
547 |
+
mo_location = locs[:,3,:].int().cpu().numpy()
|
548 |
+
|
549 |
+
|
550 |
+
f1_0 = self.conv1(img)
|
551 |
+
f1_1 = self.res1(f1_0)
|
552 |
+
f2_0 = self.conv2(f1_1)
|
553 |
+
f2_1 = self.res2(f2_0)
|
554 |
+
|
555 |
+
f3_0 = self.conv3(f2_1)
|
556 |
+
f3_1 = self.res3(f3_0)
|
557 |
+
f4_0 = self.conv4(f3_1)
|
558 |
+
f4_1 = self.res4(f4_0)
|
559 |
+
|
560 |
+
f5_0 = self.conv5(f4_1)
|
561 |
+
f5_1 = self.res5(f5_0)
|
562 |
+
f6_0 = self.conv6(f5_1)
|
563 |
+
f6_1 = self.res6(f6_0)
|
564 |
+
|
565 |
+
|
566 |
+
####ROI Align
|
567 |
+
le_part_256 = roi_align_self(f2_1.clone(), le_location//2, self.part_sizes[0]//2)
|
568 |
+
re_part_256 = roi_align_self(f2_1.clone(), re_location//2, self.part_sizes[1]//2)
|
569 |
+
mo_part_256 = roi_align_self(f2_1.clone(), mo_location//2, self.part_sizes[3]//2)
|
570 |
+
|
571 |
+
le_part_128 = roi_align_self(f4_1.clone(), le_location//4, self.part_sizes[0]//4)
|
572 |
+
re_part_128 = roi_align_self(f4_1.clone(), re_location//4, self.part_sizes[1]//4)
|
573 |
+
mo_part_128 = roi_align_self(f4_1.clone(), mo_location//4, self.part_sizes[3]//4)
|
574 |
+
|
575 |
+
le_part_64 = roi_align_self(f6_1.clone(), le_location//8, self.part_sizes[0]//8)
|
576 |
+
re_part_64 = roi_align_self(f6_1.clone(), re_location//8, self.part_sizes[1]//8)
|
577 |
+
mo_part_64 = roi_align_self(f6_1.clone(), mo_location//8, self.part_sizes[3]//8)
|
578 |
+
|
579 |
+
|
580 |
+
le_256_q = self.LE_256_Q(le_part_256)
|
581 |
+
re_256_q = self.RE_256_Q(re_part_256)
|
582 |
+
mo_256_q = self.MO_256_Q(mo_part_256)
|
583 |
+
|
584 |
+
le_128_q = self.LE_128_Q(le_part_128)
|
585 |
+
re_128_q = self.RE_128_Q(re_part_128)
|
586 |
+
mo_128_q = self.MO_128_Q(mo_part_128)
|
587 |
+
|
588 |
+
le_64_q = self.LE_64_Q(le_part_64)
|
589 |
+
re_64_q = self.RE_64_Q(re_part_64)
|
590 |
+
mo_64_q = self.MO_64_Q(mo_part_64)
|
591 |
+
|
592 |
+
return {'f256': f2_1, 'f128': f4_1, 'f64': f6_1,\
|
593 |
+
'le256': le_part_256, 're256': re_part_256, 'mo256': mo_part_256, \
|
594 |
+
'le128': le_part_128, 're128': re_part_128, 'mo128': mo_part_128, \
|
595 |
+
'le64': le_part_64, 're64': re_part_64, 'mo64': mo_part_64, \
|
596 |
+
'le_256_q': le_256_q, 're_256_q': re_256_q, 'mo_256_q': mo_256_q,\
|
597 |
+
'le_128_q': le_128_q, 're_128_q': re_128_q, 'mo_128_q': mo_128_q,\
|
598 |
+
'le_64_q': le_64_q, 're_64_q': re_64_q, 'mo_64_q': mo_64_q}
|
599 |
+
|
600 |
+
|
601 |
+
class DMDNet(nn.Module):
|
602 |
+
def __init__(self, ngf = 64, banks_num = 128):
|
603 |
+
super().__init__()
|
604 |
+
self.part_sizes = np.array([80,80,50,110]) # size for 512
|
605 |
+
self.feature_sizes = np.array([256,128,64]) # size for 512
|
606 |
+
|
607 |
+
self.banks_num = banks_num
|
608 |
+
self.key_scale = 4
|
609 |
+
|
610 |
+
self.E_lq = FeatureExtractor(key_scale = self.key_scale)
|
611 |
+
self.E_hq = FeatureExtractor(key_scale = self.key_scale)
|
612 |
+
|
613 |
+
self.LE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
|
614 |
+
self.RE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
|
615 |
+
self.MO_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
|
616 |
+
|
617 |
+
self.LE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
|
618 |
+
self.RE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
|
619 |
+
self.MO_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
|
620 |
+
|
621 |
+
self.LE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
|
622 |
+
self.RE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
|
623 |
+
self.MO_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
|
624 |
+
|
625 |
+
|
626 |
+
self.LE_256_Attention = AttentionBlock(64)
|
627 |
+
self.RE_256_Attention = AttentionBlock(64)
|
628 |
+
self.MO_256_Attention = AttentionBlock(64)
|
629 |
+
|
630 |
+
self.LE_128_Attention = AttentionBlock(128)
|
631 |
+
self.RE_128_Attention = AttentionBlock(128)
|
632 |
+
self.MO_128_Attention = AttentionBlock(128)
|
633 |
+
|
634 |
+
self.LE_64_Attention = AttentionBlock(256)
|
635 |
+
self.RE_64_Attention = AttentionBlock(256)
|
636 |
+
self.MO_64_Attention = AttentionBlock(256)
|
637 |
+
|
638 |
+
self.LE_256_Mask = MaskAttention(64)
|
639 |
+
self.RE_256_Mask = MaskAttention(64)
|
640 |
+
self.MO_256_Mask = MaskAttention(64)
|
641 |
+
|
642 |
+
self.LE_128_Mask = MaskAttention(128)
|
643 |
+
self.RE_128_Mask = MaskAttention(128)
|
644 |
+
self.MO_128_Mask = MaskAttention(128)
|
645 |
+
|
646 |
+
self.LE_64_Mask = MaskAttention(256)
|
647 |
+
self.RE_64_Mask = MaskAttention(256)
|
648 |
+
self.MO_64_Mask = MaskAttention(256)
|
649 |
+
|
650 |
+
self.MSDilate = MSDilateBlock(ngf*4, dilation = [4,3,2,1])
|
651 |
+
|
652 |
+
self.up1 = StyledUpBlock(ngf*4, ngf*2, noise_inject=False) #
|
653 |
+
self.up2 = StyledUpBlock(ngf*2, ngf, noise_inject=False) #
|
654 |
+
self.up3 = StyledUpBlock(ngf, ngf, noise_inject=False) #
|
655 |
+
self.up4 = nn.Sequential(
|
656 |
+
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
|
657 |
+
nn.LeakyReLU(0.2),
|
658 |
+
UpResBlock(ngf),
|
659 |
+
UpResBlock(ngf),
|
660 |
+
SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)),
|
661 |
+
nn.Tanh()
|
662 |
+
)
|
663 |
+
|
664 |
+
# define generic memory, revise register_buffer to register_parameter for backward update
|
665 |
+
self.register_buffer('le_256_mem_key', torch.randn(128,16,40,40))
|
666 |
+
self.register_buffer('re_256_mem_key', torch.randn(128,16,40,40))
|
667 |
+
self.register_buffer('mo_256_mem_key', torch.randn(128,16,55,55))
|
668 |
+
self.register_buffer('le_256_mem_value', torch.randn(128,64,40,40))
|
669 |
+
self.register_buffer('re_256_mem_value', torch.randn(128,64,40,40))
|
670 |
+
self.register_buffer('mo_256_mem_value', torch.randn(128,64,55,55))
|
671 |
+
|
672 |
+
|
673 |
+
self.register_buffer('le_128_mem_key', torch.randn(128,32,20,20))
|
674 |
+
self.register_buffer('re_128_mem_key', torch.randn(128,32,20,20))
|
675 |
+
self.register_buffer('mo_128_mem_key', torch.randn(128,32,27,27))
|
676 |
+
self.register_buffer('le_128_mem_value', torch.randn(128,128,20,20))
|
677 |
+
self.register_buffer('re_128_mem_value', torch.randn(128,128,20,20))
|
678 |
+
self.register_buffer('mo_128_mem_value', torch.randn(128,128,27,27))
|
679 |
+
|
680 |
+
self.register_buffer('le_64_mem_key', torch.randn(128,64,10,10))
|
681 |
+
self.register_buffer('re_64_mem_key', torch.randn(128,64,10,10))
|
682 |
+
self.register_buffer('mo_64_mem_key', torch.randn(128,64,13,13))
|
683 |
+
self.register_buffer('le_64_mem_value', torch.randn(128,256,10,10))
|
684 |
+
self.register_buffer('re_64_mem_value', torch.randn(128,256,10,10))
|
685 |
+
self.register_buffer('mo_64_mem_value', torch.randn(128,256,13,13))
|
686 |
+
|
687 |
+
|
688 |
+
def readMem(self, k, v, q):
|
689 |
+
sim = F.conv2d(q, k)
|
690 |
+
score = F.softmax(sim/sqrt(sim.size(1)), dim=1) #B * S * 1 * 1 6*128
|
691 |
+
sb,sn,sw,sh = score.size()
|
692 |
+
s_m = score.view(sb, -1).unsqueeze(1)#2*1*M
|
693 |
+
vb,vn,vw,vh = v.size()
|
694 |
+
v_in = v.view(vb, -1).repeat(sb,1,1)#2*M*(c*w*h)
|
695 |
+
mem_out = torch.bmm(s_m, v_in).squeeze(1).view(sb, vn, vw,vh)
|
696 |
+
max_inds = torch.argmax(score, dim=1).squeeze()
|
697 |
+
return mem_out, max_inds
|
698 |
+
|
699 |
+
|
700 |
+
def memorize(self, img, locs):
|
701 |
+
fs = self.E_hq(img, locs)
|
702 |
+
LE256_key, LE256_value = self.LE_256_KV(fs['le256'])
|
703 |
+
RE256_key, RE256_value = self.RE_256_KV(fs['re256'])
|
704 |
+
MO256_key, MO256_value = self.MO_256_KV(fs['mo256'])
|
705 |
+
|
706 |
+
LE128_key, LE128_value = self.LE_128_KV(fs['le128'])
|
707 |
+
RE128_key, RE128_value = self.RE_128_KV(fs['re128'])
|
708 |
+
MO128_key, MO128_value = self.MO_128_KV(fs['mo128'])
|
709 |
+
|
710 |
+
LE64_key, LE64_value = self.LE_64_KV(fs['le64'])
|
711 |
+
RE64_key, RE64_value = self.RE_64_KV(fs['re64'])
|
712 |
+
MO64_key, MO64_value = self.MO_64_KV(fs['mo64'])
|
713 |
+
|
714 |
+
Mem256 = {'LE256Key': LE256_key, 'LE256Value': LE256_value, 'RE256Key': RE256_key, 'RE256Value': RE256_value,'MO256Key': MO256_key, 'MO256Value': MO256_value}
|
715 |
+
Mem128 = {'LE128Key': LE128_key, 'LE128Value': LE128_value, 'RE128Key': RE128_key, 'RE128Value': RE128_value,'MO128Key': MO128_key, 'MO128Value': MO128_value}
|
716 |
+
Mem64 = {'LE64Key': LE64_key, 'LE64Value': LE64_value, 'RE64Key': RE64_key, 'RE64Value': RE64_value,'MO64Key': MO64_key, 'MO64Value': MO64_value}
|
717 |
+
|
718 |
+
FS256 = {'LE256F':fs['le256'], 'RE256F':fs['re256'], 'MO256F':fs['mo256']}
|
719 |
+
FS128 = {'LE128F':fs['le128'], 'RE128F':fs['re128'], 'MO128F':fs['mo128']}
|
720 |
+
FS64 = {'LE64F':fs['le64'], 'RE64F':fs['re64'], 'MO64F':fs['mo64']}
|
721 |
+
|
722 |
+
return Mem256, Mem128, Mem64
|
723 |
+
|
724 |
+
def enhancer(self, fs_in, sp_256=None, sp_128=None, sp_64=None):
|
725 |
+
le_256_q = fs_in['le_256_q']
|
726 |
+
re_256_q = fs_in['re_256_q']
|
727 |
+
mo_256_q = fs_in['mo_256_q']
|
728 |
+
|
729 |
+
le_128_q = fs_in['le_128_q']
|
730 |
+
re_128_q = fs_in['re_128_q']
|
731 |
+
mo_128_q = fs_in['mo_128_q']
|
732 |
+
|
733 |
+
le_64_q = fs_in['le_64_q']
|
734 |
+
re_64_q = fs_in['re_64_q']
|
735 |
+
mo_64_q = fs_in['mo_64_q']
|
736 |
+
|
737 |
+
|
738 |
+
####for 256
|
739 |
+
le_256_mem_g, le_256_inds = self.readMem(self.le_256_mem_key, self.le_256_mem_value, le_256_q)
|
740 |
+
re_256_mem_g, re_256_inds = self.readMem(self.re_256_mem_key, self.re_256_mem_value, re_256_q)
|
741 |
+
mo_256_mem_g, mo_256_inds = self.readMem(self.mo_256_mem_key, self.mo_256_mem_value, mo_256_q)
|
742 |
+
|
743 |
+
le_128_mem_g, le_128_inds = self.readMem(self.le_128_mem_key, self.le_128_mem_value, le_128_q)
|
744 |
+
re_128_mem_g, re_128_inds = self.readMem(self.re_128_mem_key, self.re_128_mem_value, re_128_q)
|
745 |
+
mo_128_mem_g, mo_128_inds = self.readMem(self.mo_128_mem_key, self.mo_128_mem_value, mo_128_q)
|
746 |
+
|
747 |
+
le_64_mem_g, le_64_inds = self.readMem(self.le_64_mem_key, self.le_64_mem_value, le_64_q)
|
748 |
+
re_64_mem_g, re_64_inds = self.readMem(self.re_64_mem_key, self.re_64_mem_value, re_64_q)
|
749 |
+
mo_64_mem_g, mo_64_inds = self.readMem(self.mo_64_mem_key, self.mo_64_mem_value, mo_64_q)
|
750 |
+
|
751 |
+
if sp_256 is not None and sp_128 is not None and sp_64 is not None:
|
752 |
+
le_256_mem_s, _ = self.readMem(sp_256['LE256Key'], sp_256['LE256Value'], le_256_q)
|
753 |
+
re_256_mem_s, _ = self.readMem(sp_256['RE256Key'], sp_256['RE256Value'], re_256_q)
|
754 |
+
mo_256_mem_s, _ = self.readMem(sp_256['MO256Key'], sp_256['MO256Value'], mo_256_q)
|
755 |
+
le_256_mask = self.LE_256_Mask(fs_in['le256'],le_256_mem_s,le_256_mem_g)
|
756 |
+
le_256_mem = le_256_mask*le_256_mem_s + (1-le_256_mask)*le_256_mem_g
|
757 |
+
re_256_mask = self.RE_256_Mask(fs_in['re256'],re_256_mem_s,re_256_mem_g)
|
758 |
+
re_256_mem = re_256_mask*re_256_mem_s + (1-re_256_mask)*re_256_mem_g
|
759 |
+
mo_256_mask = self.MO_256_Mask(fs_in['mo256'],mo_256_mem_s,mo_256_mem_g)
|
760 |
+
mo_256_mem = mo_256_mask*mo_256_mem_s + (1-mo_256_mask)*mo_256_mem_g
|
761 |
+
|
762 |
+
le_128_mem_s, _ = self.readMem(sp_128['LE128Key'], sp_128['LE128Value'], le_128_q)
|
763 |
+
re_128_mem_s, _ = self.readMem(sp_128['RE128Key'], sp_128['RE128Value'], re_128_q)
|
764 |
+
mo_128_mem_s, _ = self.readMem(sp_128['MO128Key'], sp_128['MO128Value'], mo_128_q)
|
765 |
+
le_128_mask = self.LE_128_Mask(fs_in['le128'],le_128_mem_s,le_128_mem_g)
|
766 |
+
le_128_mem = le_128_mask*le_128_mem_s + (1-le_128_mask)*le_128_mem_g
|
767 |
+
re_128_mask = self.RE_128_Mask(fs_in['re128'],re_128_mem_s,re_128_mem_g)
|
768 |
+
re_128_mem = re_128_mask*re_128_mem_s + (1-re_128_mask)*re_128_mem_g
|
769 |
+
mo_128_mask = self.MO_128_Mask(fs_in['mo128'],mo_128_mem_s,mo_128_mem_g)
|
770 |
+
mo_128_mem = mo_128_mask*mo_128_mem_s + (1-mo_128_mask)*mo_128_mem_g
|
771 |
+
|
772 |
+
le_64_mem_s, _ = self.readMem(sp_64['LE64Key'], sp_64['LE64Value'], le_64_q)
|
773 |
+
re_64_mem_s, _ = self.readMem(sp_64['RE64Key'], sp_64['RE64Value'], re_64_q)
|
774 |
+
mo_64_mem_s, _ = self.readMem(sp_64['MO64Key'], sp_64['MO64Value'], mo_64_q)
|
775 |
+
le_64_mask = self.LE_64_Mask(fs_in['le64'],le_64_mem_s,le_64_mem_g)
|
776 |
+
le_64_mem = le_64_mask*le_64_mem_s + (1-le_64_mask)*le_64_mem_g
|
777 |
+
re_64_mask = self.RE_64_Mask(fs_in['re64'],re_64_mem_s,re_64_mem_g)
|
778 |
+
re_64_mem = re_64_mask*re_64_mem_s + (1-re_64_mask)*re_64_mem_g
|
779 |
+
mo_64_mask = self.MO_64_Mask(fs_in['mo64'],mo_64_mem_s,mo_64_mem_g)
|
780 |
+
mo_64_mem = mo_64_mask*mo_64_mem_s + (1-mo_64_mask)*mo_64_mem_g
|
781 |
+
else:
|
782 |
+
le_256_mem = le_256_mem_g
|
783 |
+
re_256_mem = re_256_mem_g
|
784 |
+
mo_256_mem = mo_256_mem_g
|
785 |
+
le_128_mem = le_128_mem_g
|
786 |
+
re_128_mem = re_128_mem_g
|
787 |
+
mo_128_mem = mo_128_mem_g
|
788 |
+
le_64_mem = le_64_mem_g
|
789 |
+
re_64_mem = re_64_mem_g
|
790 |
+
mo_64_mem = mo_64_mem_g
|
791 |
+
|
792 |
+
le_256_mem_norm = adaptive_instance_normalization_4D(le_256_mem, fs_in['le256'])
|
793 |
+
re_256_mem_norm = adaptive_instance_normalization_4D(re_256_mem, fs_in['re256'])
|
794 |
+
mo_256_mem_norm = adaptive_instance_normalization_4D(mo_256_mem, fs_in['mo256'])
|
795 |
+
|
796 |
+
####for 128
|
797 |
+
le_128_mem_norm = adaptive_instance_normalization_4D(le_128_mem, fs_in['le128'])
|
798 |
+
re_128_mem_norm = adaptive_instance_normalization_4D(re_128_mem, fs_in['re128'])
|
799 |
+
mo_128_mem_norm = adaptive_instance_normalization_4D(mo_128_mem, fs_in['mo128'])
|
800 |
+
|
801 |
+
####for 64
|
802 |
+
le_64_mem_norm = adaptive_instance_normalization_4D(le_64_mem, fs_in['le64'])
|
803 |
+
re_64_mem_norm = adaptive_instance_normalization_4D(re_64_mem, fs_in['re64'])
|
804 |
+
mo_64_mem_norm = adaptive_instance_normalization_4D(mo_64_mem, fs_in['mo64'])
|
805 |
+
|
806 |
+
|
807 |
+
EnMem256 = {'LE256Norm': le_256_mem_norm, 'RE256Norm': re_256_mem_norm, 'MO256Norm': mo_256_mem_norm}
|
808 |
+
EnMem128 = {'LE128Norm': le_128_mem_norm, 'RE128Norm': re_128_mem_norm, 'MO128Norm': mo_128_mem_norm}
|
809 |
+
EnMem64 = {'LE64Norm': le_64_mem_norm, 'RE64Norm': re_64_mem_norm, 'MO64Norm': mo_64_mem_norm}
|
810 |
+
Ind256 = {'LE': le_256_inds, 'RE': re_256_inds, 'MO': mo_256_inds}
|
811 |
+
Ind128 = {'LE': le_128_inds, 'RE': re_128_inds, 'MO': mo_128_inds}
|
812 |
+
Ind64 = {'LE': le_64_inds, 'RE': re_64_inds, 'MO': mo_64_inds}
|
813 |
+
return EnMem256, EnMem128, EnMem64, Ind256, Ind128, Ind64
|
814 |
+
|
815 |
+
def reconstruct(self, fs_in, locs, memstar):
|
816 |
+
le_256_mem_norm, re_256_mem_norm, mo_256_mem_norm = memstar[0]['LE256Norm'], memstar[0]['RE256Norm'], memstar[0]['MO256Norm']
|
817 |
+
le_128_mem_norm, re_128_mem_norm, mo_128_mem_norm = memstar[1]['LE128Norm'], memstar[1]['RE128Norm'], memstar[1]['MO128Norm']
|
818 |
+
le_64_mem_norm, re_64_mem_norm, mo_64_mem_norm = memstar[2]['LE64Norm'], memstar[2]['RE64Norm'], memstar[2]['MO64Norm']
|
819 |
+
|
820 |
+
le_256_final = self.LE_256_Attention(le_256_mem_norm - fs_in['le256']) * le_256_mem_norm + fs_in['le256']
|
821 |
+
re_256_final = self.RE_256_Attention(re_256_mem_norm - fs_in['re256']) * re_256_mem_norm + fs_in['re256']
|
822 |
+
mo_256_final = self.MO_256_Attention(mo_256_mem_norm - fs_in['mo256']) * mo_256_mem_norm + fs_in['mo256']
|
823 |
+
|
824 |
+
le_128_final = self.LE_128_Attention(le_128_mem_norm - fs_in['le128']) * le_128_mem_norm + fs_in['le128']
|
825 |
+
re_128_final = self.RE_128_Attention(re_128_mem_norm - fs_in['re128']) * re_128_mem_norm + fs_in['re128']
|
826 |
+
mo_128_final = self.MO_128_Attention(mo_128_mem_norm - fs_in['mo128']) * mo_128_mem_norm + fs_in['mo128']
|
827 |
+
|
828 |
+
le_64_final = self.LE_64_Attention(le_64_mem_norm - fs_in['le64']) * le_64_mem_norm + fs_in['le64']
|
829 |
+
re_64_final = self.RE_64_Attention(re_64_mem_norm - fs_in['re64']) * re_64_mem_norm + fs_in['re64']
|
830 |
+
mo_64_final = self.MO_64_Attention(mo_64_mem_norm - fs_in['mo64']) * mo_64_mem_norm + fs_in['mo64']
|
831 |
+
|
832 |
+
|
833 |
+
le_location = locs[:,0,:]
|
834 |
+
re_location = locs[:,1,:]
|
835 |
+
mo_location = locs[:,3,:]
|
836 |
+
|
837 |
+
# Somehow with latest Torch it doesn't like numpy wrappers anymore
|
838 |
+
|
839 |
+
# le_location = le_location.cpu().int().numpy()
|
840 |
+
# re_location = re_location.cpu().int().numpy()
|
841 |
+
# mo_location = mo_location.cpu().int().numpy()
|
842 |
+
le_location = le_location.cpu().int()
|
843 |
+
re_location = re_location.cpu().int()
|
844 |
+
mo_location = mo_location.cpu().int()
|
845 |
+
|
846 |
+
up_in_256 = fs_in['f256'].clone()# * 0
|
847 |
+
up_in_128 = fs_in['f128'].clone()# * 0
|
848 |
+
up_in_64 = fs_in['f64'].clone()# * 0
|
849 |
+
|
850 |
+
for i in range(fs_in['f256'].size(0)):
|
851 |
+
up_in_256[i:i+1,:,le_location[i,1]//2:le_location[i,3]//2,le_location[i,0]//2:le_location[i,2]//2] = F.interpolate(le_256_final[i:i+1,:,:,:].clone(), (le_location[i,3]//2-le_location[i,1]//2,le_location[i,2]//2-le_location[i,0]//2),mode='bilinear',align_corners=False)
|
852 |
+
up_in_256[i:i+1,:,re_location[i,1]//2:re_location[i,3]//2,re_location[i,0]//2:re_location[i,2]//2] = F.interpolate(re_256_final[i:i+1,:,:,:].clone(), (re_location[i,3]//2-re_location[i,1]//2,re_location[i,2]//2-re_location[i,0]//2),mode='bilinear',align_corners=False)
|
853 |
+
up_in_256[i:i+1,:,mo_location[i,1]//2:mo_location[i,3]//2,mo_location[i,0]//2:mo_location[i,2]//2] = F.interpolate(mo_256_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//2-mo_location[i,1]//2,mo_location[i,2]//2-mo_location[i,0]//2),mode='bilinear',align_corners=False)
|
854 |
+
|
855 |
+
up_in_128[i:i+1,:,le_location[i,1]//4:le_location[i,3]//4,le_location[i,0]//4:le_location[i,2]//4] = F.interpolate(le_128_final[i:i+1,:,:,:].clone(), (le_location[i,3]//4-le_location[i,1]//4,le_location[i,2]//4-le_location[i,0]//4),mode='bilinear',align_corners=False)
|
856 |
+
up_in_128[i:i+1,:,re_location[i,1]//4:re_location[i,3]//4,re_location[i,0]//4:re_location[i,2]//4] = F.interpolate(re_128_final[i:i+1,:,:,:].clone(), (re_location[i,3]//4-re_location[i,1]//4,re_location[i,2]//4-re_location[i,0]//4),mode='bilinear',align_corners=False)
|
857 |
+
up_in_128[i:i+1,:,mo_location[i,1]//4:mo_location[i,3]//4,mo_location[i,0]//4:mo_location[i,2]//4] = F.interpolate(mo_128_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//4-mo_location[i,1]//4,mo_location[i,2]//4-mo_location[i,0]//4),mode='bilinear',align_corners=False)
|
858 |
+
|
859 |
+
up_in_64[i:i+1,:,le_location[i,1]//8:le_location[i,3]//8,le_location[i,0]//8:le_location[i,2]//8] = F.interpolate(le_64_final[i:i+1,:,:,:].clone(), (le_location[i,3]//8-le_location[i,1]//8,le_location[i,2]//8-le_location[i,0]//8),mode='bilinear',align_corners=False)
|
860 |
+
up_in_64[i:i+1,:,re_location[i,1]//8:re_location[i,3]//8,re_location[i,0]//8:re_location[i,2]//8] = F.interpolate(re_64_final[i:i+1,:,:,:].clone(), (re_location[i,3]//8-re_location[i,1]//8,re_location[i,2]//8-re_location[i,0]//8),mode='bilinear',align_corners=False)
|
861 |
+
up_in_64[i:i+1,:,mo_location[i,1]//8:mo_location[i,3]//8,mo_location[i,0]//8:mo_location[i,2]//8] = F.interpolate(mo_64_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//8-mo_location[i,1]//8,mo_location[i,2]//8-mo_location[i,0]//8),mode='bilinear',align_corners=False)
|
862 |
+
|
863 |
+
ms_in_64 = self.MSDilate(fs_in['f64'].clone())
|
864 |
+
fea_up1 = self.up1(ms_in_64, up_in_64)
|
865 |
+
fea_up2 = self.up2(fea_up1, up_in_128) #
|
866 |
+
fea_up3 = self.up3(fea_up2, up_in_256) #
|
867 |
+
output = self.up4(fea_up3) #
|
868 |
+
return output
|
869 |
+
|
870 |
+
def generate_specific_dictionary(self, sp_imgs=None, sp_locs=None):
|
871 |
+
return self.memorize(sp_imgs, sp_locs)
|
872 |
+
|
873 |
+
def forward(self, lq=None, loc=None, sp_256 = None, sp_128 = None, sp_64 = None):
|
874 |
+
try:
|
875 |
+
fs_in = self.E_lq(lq, loc) # low quality images
|
876 |
+
except Exception as e:
|
877 |
+
print(e)
|
878 |
+
|
879 |
+
GeMemNorm256, GeMemNorm128, GeMemNorm64, Ind256, Ind128, Ind64 = self.enhancer(fs_in)
|
880 |
+
GeOut = self.reconstruct(fs_in, loc, memstar = [GeMemNorm256, GeMemNorm128, GeMemNorm64])
|
881 |
+
if sp_256 is not None and sp_128 is not None and sp_64 is not None:
|
882 |
+
GSMemNorm256, GSMemNorm128, GSMemNorm64, _, _, _ = self.enhancer(fs_in, sp_256, sp_128, sp_64)
|
883 |
+
GSOut = self.reconstruct(fs_in, loc, memstar = [GSMemNorm256, GSMemNorm128, GSMemNorm64])
|
884 |
+
else:
|
885 |
+
GSOut = None
|
886 |
+
return GeOut, GSOut
|
887 |
+
|
888 |
+
class UpResBlock(nn.Module):
|
889 |
+
def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d):
|
890 |
+
super(UpResBlock, self).__init__()
|
891 |
+
self.Model = nn.Sequential(
|
892 |
+
SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
|
893 |
+
nn.LeakyReLU(0.2),
|
894 |
+
SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
|
895 |
+
)
|
896 |
+
def forward(self, x):
|
897 |
+
out = x + self.Model(x)
|
898 |
+
return out
|
roop/processors/Enhance_GFPGAN.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Callable
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime
|
5 |
+
import roop.globals
|
6 |
+
|
7 |
+
from roop.typing import Face, Frame, FaceSet
|
8 |
+
from roop.utilities import resolve_relative_path
|
9 |
+
|
10 |
+
class Enhance_GFPGAN():
|
11 |
+
plugin_options:dict = None
|
12 |
+
|
13 |
+
model_gfpgan = None
|
14 |
+
name = None
|
15 |
+
devicename = None
|
16 |
+
|
17 |
+
processorname = 'gfpgan'
|
18 |
+
type = 'enhance'
|
19 |
+
|
20 |
+
|
21 |
+
def Initialize(self, plugin_options:dict):
|
22 |
+
if self.plugin_options is not None:
|
23 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
24 |
+
self.Release()
|
25 |
+
|
26 |
+
self.plugin_options = plugin_options
|
27 |
+
if self.model_gfpgan is None:
|
28 |
+
model_path = resolve_relative_path('../models/GFPGANv1.4.onnx')
|
29 |
+
self.model_gfpgan = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
|
30 |
+
# replace Mac mps with cpu for the moment
|
31 |
+
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
|
32 |
+
|
33 |
+
self.name = self.model_gfpgan.get_inputs()[0].name
|
34 |
+
|
35 |
+
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
|
36 |
+
# preprocess
|
37 |
+
input_size = temp_frame.shape[1]
|
38 |
+
temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
|
39 |
+
|
40 |
+
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
41 |
+
temp_frame = temp_frame.astype('float32') / 255.0
|
42 |
+
temp_frame = (temp_frame - 0.5) / 0.5
|
43 |
+
temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
|
44 |
+
|
45 |
+
io_binding = self.model_gfpgan.io_binding()
|
46 |
+
io_binding.bind_cpu_input("input", temp_frame)
|
47 |
+
io_binding.bind_output("1288", self.devicename)
|
48 |
+
self.model_gfpgan.run_with_iobinding(io_binding)
|
49 |
+
ort_outs = io_binding.copy_outputs_to_cpu()
|
50 |
+
result = ort_outs[0][0]
|
51 |
+
|
52 |
+
# post-process
|
53 |
+
result = np.clip(result, -1, 1)
|
54 |
+
result = (result + 1) / 2
|
55 |
+
result = result.transpose(1, 2, 0) * 255.0
|
56 |
+
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
|
57 |
+
scale_factor = int(result.shape[1] / input_size)
|
58 |
+
return result.astype(np.uint8), scale_factor
|
59 |
+
|
60 |
+
|
61 |
+
def Release(self):
|
62 |
+
self.model_gfpgan = None
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
roop/processors/Enhance_GPEN.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Callable
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime
|
5 |
+
import roop.globals
|
6 |
+
|
7 |
+
from roop.typing import Face, Frame, FaceSet
|
8 |
+
from roop.utilities import resolve_relative_path
|
9 |
+
|
10 |
+
|
11 |
+
class Enhance_GPEN():
|
12 |
+
plugin_options:dict = None
|
13 |
+
|
14 |
+
model_gpen = None
|
15 |
+
name = None
|
16 |
+
devicename = None
|
17 |
+
|
18 |
+
processorname = 'gpen'
|
19 |
+
type = 'enhance'
|
20 |
+
|
21 |
+
|
22 |
+
def Initialize(self, plugin_options:dict):
|
23 |
+
if self.plugin_options is not None:
|
24 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
25 |
+
self.Release()
|
26 |
+
|
27 |
+
self.plugin_options = plugin_options
|
28 |
+
if self.model_gpen is None:
|
29 |
+
model_path = resolve_relative_path('../models/GPEN-BFR-512.onnx')
|
30 |
+
self.model_gpen = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
|
31 |
+
# replace Mac mps with cpu for the moment
|
32 |
+
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
|
33 |
+
|
34 |
+
self.name = self.model_gpen.get_inputs()[0].name
|
35 |
+
|
36 |
+
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
|
37 |
+
# preprocess
|
38 |
+
input_size = temp_frame.shape[1]
|
39 |
+
temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
|
40 |
+
|
41 |
+
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
42 |
+
temp_frame = temp_frame.astype('float32') / 255.0
|
43 |
+
temp_frame = (temp_frame - 0.5) / 0.5
|
44 |
+
temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
|
45 |
+
|
46 |
+
io_binding = self.model_gpen.io_binding()
|
47 |
+
io_binding.bind_cpu_input("input", temp_frame)
|
48 |
+
io_binding.bind_output("output", self.devicename)
|
49 |
+
self.model_gpen.run_with_iobinding(io_binding)
|
50 |
+
ort_outs = io_binding.copy_outputs_to_cpu()
|
51 |
+
result = ort_outs[0][0]
|
52 |
+
|
53 |
+
# post-process
|
54 |
+
result = np.clip(result, -1, 1)
|
55 |
+
result = (result + 1) / 2
|
56 |
+
result = result.transpose(1, 2, 0) * 255.0
|
57 |
+
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
|
58 |
+
scale_factor = int(result.shape[1] / input_size)
|
59 |
+
return result.astype(np.uint8), scale_factor
|
60 |
+
|
61 |
+
|
62 |
+
def Release(self):
|
63 |
+
self.model_gpen = None
|
roop/processors/Enhance_RestoreFormerPPlus.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Callable
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime
|
5 |
+
import roop.globals
|
6 |
+
|
7 |
+
from roop.typing import Face, Frame, FaceSet
|
8 |
+
from roop.utilities import resolve_relative_path
|
9 |
+
|
10 |
+
class Enhance_RestoreFormerPPlus():
|
11 |
+
plugin_options:dict = None
|
12 |
+
model_restoreformerpplus = None
|
13 |
+
devicename = None
|
14 |
+
name = None
|
15 |
+
|
16 |
+
processorname = 'restoreformer++'
|
17 |
+
type = 'enhance'
|
18 |
+
|
19 |
+
|
20 |
+
def Initialize(self, plugin_options:dict):
|
21 |
+
if self.plugin_options is not None:
|
22 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
23 |
+
self.Release()
|
24 |
+
|
25 |
+
self.plugin_options = plugin_options
|
26 |
+
if self.model_restoreformerpplus is None:
|
27 |
+
# replace Mac mps with cpu for the moment
|
28 |
+
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
|
29 |
+
model_path = resolve_relative_path('../models/restoreformer_plus_plus.onnx')
|
30 |
+
self.model_restoreformerpplus = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
|
31 |
+
self.model_inputs = self.model_restoreformerpplus.get_inputs()
|
32 |
+
model_outputs = self.model_restoreformerpplus.get_outputs()
|
33 |
+
self.io_binding = self.model_restoreformerpplus.io_binding()
|
34 |
+
self.io_binding.bind_output(model_outputs[0].name, self.devicename)
|
35 |
+
|
36 |
+
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
|
37 |
+
# preprocess
|
38 |
+
input_size = temp_frame.shape[1]
|
39 |
+
temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
|
40 |
+
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
|
41 |
+
temp_frame = temp_frame.astype('float32') / 255.0
|
42 |
+
temp_frame = (temp_frame - 0.5) / 0.5
|
43 |
+
temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
|
44 |
+
|
45 |
+
self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) # .astype(np.float32)
|
46 |
+
self.model_restoreformerpplus.run_with_iobinding(self.io_binding)
|
47 |
+
ort_outs = self.io_binding.copy_outputs_to_cpu()
|
48 |
+
result = ort_outs[0][0]
|
49 |
+
del ort_outs
|
50 |
+
|
51 |
+
result = np.clip(result, -1, 1)
|
52 |
+
result = (result + 1) / 2
|
53 |
+
result = result.transpose(1, 2, 0) * 255.0
|
54 |
+
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
|
55 |
+
scale_factor = int(result.shape[1] / input_size)
|
56 |
+
return result.astype(np.uint8), scale_factor
|
57 |
+
|
58 |
+
|
59 |
+
def Release(self):
|
60 |
+
del self.model_restoreformerpplus
|
61 |
+
self.model_restoreformerpplus = None
|
62 |
+
del self.io_binding
|
63 |
+
self.io_binding = None
|
64 |
+
|
roop/processors/FaceSwapInsightFace.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import roop.globals
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import onnx
|
5 |
+
import onnxruntime
|
6 |
+
|
7 |
+
from roop.typing import Face, Frame
|
8 |
+
from roop.utilities import resolve_relative_path
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
class FaceSwapInsightFace():
|
13 |
+
plugin_options:dict = None
|
14 |
+
model_swap_insightface = None
|
15 |
+
|
16 |
+
processorname = 'faceswap'
|
17 |
+
type = 'swap'
|
18 |
+
|
19 |
+
|
20 |
+
def Initialize(self, plugin_options:dict):
|
21 |
+
if self.plugin_options is not None:
|
22 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
23 |
+
self.Release()
|
24 |
+
|
25 |
+
self.plugin_options = plugin_options
|
26 |
+
if self.model_swap_insightface is None:
|
27 |
+
model_path = resolve_relative_path('../models/inswapper_128.onnx')
|
28 |
+
graph = onnx.load(model_path).graph
|
29 |
+
self.emap = onnx.numpy_helper.to_array(graph.initializer[-1])
|
30 |
+
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
|
31 |
+
self.input_mean = 0.0
|
32 |
+
self.input_std = 255.0
|
33 |
+
#cuda_options = {"arena_extend_strategy": "kSameAsRequested", 'cudnn_conv_algo_search': 'DEFAULT'}
|
34 |
+
sess_options = onnxruntime.SessionOptions()
|
35 |
+
sess_options.enable_cpu_mem_arena = False
|
36 |
+
self.model_swap_insightface = onnxruntime.InferenceSession(model_path, sess_options, providers=roop.globals.execution_providers)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def Run(self, source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
|
41 |
+
latent = source_face.normed_embedding.reshape((1,-1))
|
42 |
+
latent = np.dot(latent, self.emap)
|
43 |
+
latent /= np.linalg.norm(latent)
|
44 |
+
io_binding = self.model_swap_insightface.io_binding()
|
45 |
+
io_binding.bind_cpu_input("target", temp_frame)
|
46 |
+
io_binding.bind_cpu_input("source", latent)
|
47 |
+
io_binding.bind_output("output", self.devicename)
|
48 |
+
self.model_swap_insightface.run_with_iobinding(io_binding)
|
49 |
+
ort_outs = io_binding.copy_outputs_to_cpu()[0]
|
50 |
+
return ort_outs[0]
|
51 |
+
|
52 |
+
|
53 |
+
def Release(self):
|
54 |
+
del self.model_swap_insightface
|
55 |
+
self.model_swap_insightface = None
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
roop/processors/Frame_Colorizer.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import onnxruntime
|
4 |
+
import roop.globals
|
5 |
+
|
6 |
+
from roop.utilities import resolve_relative_path
|
7 |
+
from roop.typing import Frame
|
8 |
+
|
9 |
+
class Frame_Colorizer():
|
10 |
+
plugin_options:dict = None
|
11 |
+
model_colorizer = None
|
12 |
+
devicename = None
|
13 |
+
prev_type = None
|
14 |
+
|
15 |
+
processorname = 'deoldify'
|
16 |
+
type = 'frame_colorizer'
|
17 |
+
|
18 |
+
|
19 |
+
def Initialize(self, plugin_options:dict):
|
20 |
+
if self.plugin_options is not None:
|
21 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
22 |
+
self.Release()
|
23 |
+
|
24 |
+
self.plugin_options = plugin_options
|
25 |
+
if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]:
|
26 |
+
self.Release()
|
27 |
+
self.prev_type = self.plugin_options["subtype"]
|
28 |
+
if self.model_colorizer is None:
|
29 |
+
# replace Mac mps with cpu for the moment
|
30 |
+
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
|
31 |
+
if self.prev_type == "deoldify_artistic":
|
32 |
+
model_path = resolve_relative_path('../models/Frame/deoldify_artistic.onnx')
|
33 |
+
elif self.prev_type == "deoldify_stable":
|
34 |
+
model_path = resolve_relative_path('../models/Frame/deoldify_stable.onnx')
|
35 |
+
|
36 |
+
onnxruntime.set_default_logger_severity(3)
|
37 |
+
self.model_colorizer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
|
38 |
+
self.model_inputs = self.model_colorizer.get_inputs()
|
39 |
+
model_outputs = self.model_colorizer.get_outputs()
|
40 |
+
self.io_binding = self.model_colorizer.io_binding()
|
41 |
+
self.io_binding.bind_output(model_outputs[0].name, self.devicename)
|
42 |
+
|
43 |
+
def Run(self, input_frame: Frame) -> Frame:
|
44 |
+
temp_frame = cv2.cvtColor(input_frame, cv2.COLOR_BGR2GRAY)
|
45 |
+
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB)
|
46 |
+
temp_frame = cv2.resize(temp_frame, (256, 256))
|
47 |
+
temp_frame = temp_frame.transpose((2, 0, 1))
|
48 |
+
temp_frame = np.expand_dims(temp_frame, axis=0).astype(np.float32)
|
49 |
+
self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame)
|
50 |
+
self.model_colorizer.run_with_iobinding(self.io_binding)
|
51 |
+
ort_outs = self.io_binding.copy_outputs_to_cpu()
|
52 |
+
result = ort_outs[0][0]
|
53 |
+
del ort_outs
|
54 |
+
colorized_frame = result.transpose(1, 2, 0)
|
55 |
+
colorized_frame = cv2.resize(colorized_frame, (input_frame.shape[1], input_frame.shape[0]))
|
56 |
+
temp_blue_channel, _, _ = cv2.split(input_frame)
|
57 |
+
colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_BGR2RGB).astype(np.uint8)
|
58 |
+
colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_BGR2LAB)
|
59 |
+
_, color_green_channel, color_red_channel = cv2.split(colorized_frame)
|
60 |
+
colorized_frame = cv2.merge((temp_blue_channel, color_green_channel, color_red_channel))
|
61 |
+
colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_LAB2BGR)
|
62 |
+
return colorized_frame.astype(np.uint8)
|
63 |
+
|
64 |
+
|
65 |
+
def Release(self):
|
66 |
+
del self.model_colorizer
|
67 |
+
self.model_colorizer = None
|
68 |
+
del self.io_binding
|
69 |
+
self.io_binding = None
|
70 |
+
|
roop/processors/Frame_Filter.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from roop.typing import Frame
|
5 |
+
|
6 |
+
class Frame_Filter():
|
7 |
+
processorname = 'generic_filter'
|
8 |
+
type = 'frame_processor'
|
9 |
+
|
10 |
+
plugin_options:dict = None
|
11 |
+
|
12 |
+
c64_palette = np.array([
|
13 |
+
[0, 0, 0],
|
14 |
+
[255, 255, 255],
|
15 |
+
[0x81, 0x33, 0x38],
|
16 |
+
[0x75, 0xce, 0xc8],
|
17 |
+
[0x8e, 0x3c, 0x97],
|
18 |
+
[0x56, 0xac, 0x4d],
|
19 |
+
[0x2e, 0x2c, 0x9b],
|
20 |
+
[0xed, 0xf1, 0x71],
|
21 |
+
[0x8e, 0x50, 0x29],
|
22 |
+
[0x55, 0x38, 0x00],
|
23 |
+
[0xc4, 0x6c, 0x71],
|
24 |
+
[0x4a, 0x4a, 0x4a],
|
25 |
+
[0x7b, 0x7b, 0x7b],
|
26 |
+
[0xa9, 0xff, 0x9f],
|
27 |
+
[0x70, 0x6d, 0xeb],
|
28 |
+
[0xb2, 0xb2, 0xb2]
|
29 |
+
])
|
30 |
+
|
31 |
+
|
32 |
+
def RenderC64Screen(self, image):
|
33 |
+
# Simply round the color values to the nearest color in the palette
|
34 |
+
image = cv2.resize(image,(320,200))
|
35 |
+
palette = self.c64_palette / 255.0 # Normalize palette
|
36 |
+
img_normalized = image / 255.0 # Normalize image
|
37 |
+
|
38 |
+
# Calculate the index in the palette that is closest to each pixel in the image
|
39 |
+
indices = np.sqrt(((img_normalized[:, :, None, :] - palette[None, None, :, :]) ** 2).sum(axis=3)).argmin(axis=2)
|
40 |
+
# Map the image to the palette colors
|
41 |
+
mapped_image = palette[indices]
|
42 |
+
return (mapped_image * 255).astype(np.uint8) # Denormalize and return the image
|
43 |
+
|
44 |
+
|
45 |
+
def RenderDetailEnhance(self, image):
|
46 |
+
return cv2.detailEnhance(image)
|
47 |
+
|
48 |
+
def RenderStylize(self, image):
|
49 |
+
return cv2.stylization(image)
|
50 |
+
|
51 |
+
def RenderPencilSketch(self, image):
|
52 |
+
imgray, imout = cv2.pencilSketch(image, sigma_s=60, sigma_r=0.07, shade_factor=0.05)
|
53 |
+
return imout
|
54 |
+
|
55 |
+
def RenderCartoon(self, image):
|
56 |
+
numDownSamples = 2 # number of downscaling steps
|
57 |
+
numBilateralFilters = 7 # number of bilateral filtering steps
|
58 |
+
|
59 |
+
img_color = image
|
60 |
+
for _ in range(numDownSamples):
|
61 |
+
img_color = cv2.pyrDown(img_color)
|
62 |
+
for _ in range(numBilateralFilters):
|
63 |
+
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
|
64 |
+
for _ in range(numDownSamples):
|
65 |
+
img_color = cv2.pyrUp(img_color)
|
66 |
+
img_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
67 |
+
img_blur = cv2.medianBlur(img_gray, 7)
|
68 |
+
img_edge = cv2.adaptiveThreshold(img_blur, 255,
|
69 |
+
cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)
|
70 |
+
img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
|
71 |
+
if img_color.shape != image.shape:
|
72 |
+
img_color = cv2.resize(img_color, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
|
73 |
+
if img_color.shape != img_edge.shape:
|
74 |
+
img_edge = cv2.resize(img_edge, (img_color.shape[1], img_color.shape[0]), interpolation=cv2.INTER_LINEAR)
|
75 |
+
return cv2.bitwise_and(img_color, img_edge)
|
76 |
+
|
77 |
+
|
78 |
+
def Initialize(self, plugin_options:dict):
|
79 |
+
if self.plugin_options is not None:
|
80 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
81 |
+
self.Release()
|
82 |
+
self.plugin_options = plugin_options
|
83 |
+
|
84 |
+
def Run(self, temp_frame: Frame) -> Frame:
|
85 |
+
subtype = self.plugin_options["subtype"]
|
86 |
+
if subtype == "stylize":
|
87 |
+
return self.RenderStylize(temp_frame).astype(np.uint8)
|
88 |
+
if subtype == "detailenhance":
|
89 |
+
return self.RenderDetailEnhance(temp_frame).astype(np.uint8)
|
90 |
+
if subtype == "pencil":
|
91 |
+
return self.RenderPencilSketch(temp_frame).astype(np.uint8)
|
92 |
+
if subtype == "cartoon":
|
93 |
+
return self.RenderCartoon(temp_frame).astype(np.uint8)
|
94 |
+
if subtype == "C64":
|
95 |
+
return self.RenderC64Screen(temp_frame).astype(np.uint8)
|
96 |
+
|
97 |
+
|
98 |
+
def Release(self):
|
99 |
+
pass
|
100 |
+
|
101 |
+
def getProcessedResolution(self, width, height):
|
102 |
+
if self.plugin_options["subtype"] == "C64":
|
103 |
+
return (320,200)
|
104 |
+
return None
|
105 |
+
|
roop/processors/Frame_Masking.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import onnxruntime
|
4 |
+
import roop.globals
|
5 |
+
|
6 |
+
from roop.utilities import resolve_relative_path
|
7 |
+
from roop.typing import Frame
|
8 |
+
|
9 |
+
class Frame_Masking():
|
10 |
+
plugin_options:dict = None
|
11 |
+
model_masking = None
|
12 |
+
devicename = None
|
13 |
+
name = None
|
14 |
+
|
15 |
+
processorname = 'removebg'
|
16 |
+
type = 'frame_masking'
|
17 |
+
|
18 |
+
|
19 |
+
def Initialize(self, plugin_options:dict):
|
20 |
+
if self.plugin_options is not None:
|
21 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
22 |
+
self.Release()
|
23 |
+
|
24 |
+
self.plugin_options = plugin_options
|
25 |
+
if self.model_masking is None:
|
26 |
+
# replace Mac mps with cpu for the moment
|
27 |
+
self.devicename = self.plugin_options["devicename"]
|
28 |
+
self.devicename = self.devicename.replace('mps', 'cpu')
|
29 |
+
model_path = resolve_relative_path('../models/Frame/isnet-general-use.onnx')
|
30 |
+
self.model_masking = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
|
31 |
+
self.model_inputs = self.model_masking.get_inputs()
|
32 |
+
model_outputs = self.model_masking.get_outputs()
|
33 |
+
self.io_binding = self.model_masking.io_binding()
|
34 |
+
self.io_binding.bind_output(model_outputs[0].name, self.devicename)
|
35 |
+
|
36 |
+
def Run(self, temp_frame: Frame) -> Frame:
|
37 |
+
# Pre process:Resize, BGR->RGB, float32 cast
|
38 |
+
input_image = cv2.resize(temp_frame, (1024, 1024))
|
39 |
+
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
|
40 |
+
mean = [0.5, 0.5, 0.5]
|
41 |
+
std = [1.0, 1.0, 1.0]
|
42 |
+
input_image = (input_image / 255.0 - mean) / std
|
43 |
+
input_image = input_image.transpose(2, 0, 1)
|
44 |
+
input_image = np.expand_dims(input_image, axis=0)
|
45 |
+
input_image = input_image.astype('float32')
|
46 |
+
|
47 |
+
self.io_binding.bind_cpu_input(self.model_inputs[0].name, input_image)
|
48 |
+
self.model_masking.run_with_iobinding(self.io_binding)
|
49 |
+
ort_outs = self.io_binding.copy_outputs_to_cpu()
|
50 |
+
result = ort_outs[0][0]
|
51 |
+
del ort_outs
|
52 |
+
# Post process:squeeze, Sigmoid, Normarize, uint8 cast
|
53 |
+
mask = np.squeeze(result[0])
|
54 |
+
min_value = np.min(mask)
|
55 |
+
max_value = np.max(mask)
|
56 |
+
mask = (mask - min_value) / (max_value - min_value)
|
57 |
+
#mask = np.where(mask < score_th, 0, 1)
|
58 |
+
#mask *= 255
|
59 |
+
mask = cv2.resize(mask, (temp_frame.shape[1], temp_frame.shape[0]), interpolation=cv2.INTER_LINEAR)
|
60 |
+
mask = np.reshape(mask, [mask.shape[0],mask.shape[1],1])
|
61 |
+
result = mask * temp_frame.astype(np.float32)
|
62 |
+
return result.astype(np.uint8)
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
def Release(self):
|
67 |
+
del self.model_masking
|
68 |
+
self.model_masking = None
|
69 |
+
del self.io_binding
|
70 |
+
self.io_binding = None
|
71 |
+
|
roop/processors/Frame_Upscale.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import onnxruntime
|
4 |
+
import roop.globals
|
5 |
+
|
6 |
+
from roop.utilities import resolve_relative_path, conditional_thread_semaphore
|
7 |
+
from roop.typing import Frame
|
8 |
+
|
9 |
+
|
10 |
+
class Frame_Upscale():
|
11 |
+
plugin_options:dict = None
|
12 |
+
model_upscale = None
|
13 |
+
devicename = None
|
14 |
+
prev_type = None
|
15 |
+
|
16 |
+
processorname = 'upscale'
|
17 |
+
type = 'frame_enhancer'
|
18 |
+
|
19 |
+
|
20 |
+
def Initialize(self, plugin_options:dict):
|
21 |
+
if self.plugin_options is not None:
|
22 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
23 |
+
self.Release()
|
24 |
+
|
25 |
+
self.plugin_options = plugin_options
|
26 |
+
if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]:
|
27 |
+
self.Release()
|
28 |
+
self.prev_type = self.plugin_options["subtype"]
|
29 |
+
if self.model_upscale is None:
|
30 |
+
# replace Mac mps with cpu for the moment
|
31 |
+
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
|
32 |
+
if self.prev_type == "esrganx4":
|
33 |
+
model_path = resolve_relative_path('../models/Frame/real_esrgan_x4.onnx')
|
34 |
+
self.scale = 4
|
35 |
+
elif self.prev_type == "esrganx2":
|
36 |
+
model_path = resolve_relative_path('../models/Frame/real_esrgan_x2.onnx')
|
37 |
+
self.scale = 2
|
38 |
+
elif self.prev_type == "lsdirx4":
|
39 |
+
model_path = resolve_relative_path('../models/Frame/lsdir_x4.onnx')
|
40 |
+
self.scale = 4
|
41 |
+
onnxruntime.set_default_logger_severity(3)
|
42 |
+
self.model_upscale = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
|
43 |
+
self.model_inputs = self.model_upscale.get_inputs()
|
44 |
+
model_outputs = self.model_upscale.get_outputs()
|
45 |
+
self.io_binding = self.model_upscale.io_binding()
|
46 |
+
self.io_binding.bind_output(model_outputs[0].name, self.devicename)
|
47 |
+
|
48 |
+
def getProcessedResolution(self, width, height):
|
49 |
+
return (width * self.scale, height * self.scale)
|
50 |
+
|
51 |
+
# borrowed from facefusion -> https://github.com/facefusion/facefusion
|
52 |
+
def prepare_tile_frame(self, tile_frame : Frame) -> Frame:
|
53 |
+
tile_frame = np.expand_dims(tile_frame[:, :, ::-1], axis = 0)
|
54 |
+
tile_frame = tile_frame.transpose(0, 3, 1, 2)
|
55 |
+
tile_frame = tile_frame.astype(np.float32) / 255
|
56 |
+
return tile_frame
|
57 |
+
|
58 |
+
|
59 |
+
def normalize_tile_frame(self, tile_frame : Frame) -> Frame:
|
60 |
+
tile_frame = tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255
|
61 |
+
tile_frame = tile_frame.clip(0, 255).astype(np.uint8)[:, :, ::-1]
|
62 |
+
return tile_frame
|
63 |
+
|
64 |
+
def create_tile_frames(self, input_frame : Frame, size):
|
65 |
+
input_frame = np.pad(input_frame, ((size[1], size[1]), (size[1], size[1]), (0, 0)))
|
66 |
+
tile_width = size[0] - 2 * size[2]
|
67 |
+
pad_size_bottom = size[2] + tile_width - input_frame.shape[0] % tile_width
|
68 |
+
pad_size_right = size[2] + tile_width - input_frame.shape[1] % tile_width
|
69 |
+
pad_vision_frame = np.pad(input_frame, ((size[2], pad_size_bottom), (size[2], pad_size_right), (0, 0)))
|
70 |
+
pad_height, pad_width = pad_vision_frame.shape[:2]
|
71 |
+
row_range = range(size[2], pad_height - size[2], tile_width)
|
72 |
+
col_range = range(size[2], pad_width - size[2], tile_width)
|
73 |
+
tile_frames = []
|
74 |
+
|
75 |
+
for row_frame in row_range:
|
76 |
+
top = row_frame - size[2]
|
77 |
+
bottom = row_frame + size[2] + tile_width
|
78 |
+
for column_vision_frame in col_range:
|
79 |
+
left = column_vision_frame - size[2]
|
80 |
+
right = column_vision_frame + size[2] + tile_width
|
81 |
+
tile_frames.append(pad_vision_frame[top:bottom, left:right, :])
|
82 |
+
return tile_frames, pad_width, pad_height
|
83 |
+
|
84 |
+
|
85 |
+
def merge_tile_frames(self, tile_frames, temp_width : int, temp_height : int, pad_width : int, pad_height : int, size) -> Frame:
|
86 |
+
merge_frame = np.zeros((pad_height, pad_width, 3)).astype(np.uint8)
|
87 |
+
tile_width = tile_frames[0].shape[1] - 2 * size[2]
|
88 |
+
tiles_per_row = min(pad_width // tile_width, len(tile_frames))
|
89 |
+
|
90 |
+
for index, tile_frame in enumerate(tile_frames):
|
91 |
+
tile_frame = tile_frame[size[2]:-size[2], size[2]:-size[2]]
|
92 |
+
row_index = index // tiles_per_row
|
93 |
+
col_index = index % tiles_per_row
|
94 |
+
top = row_index * tile_frame.shape[0]
|
95 |
+
bottom = top + tile_frame.shape[0]
|
96 |
+
left = col_index * tile_frame.shape[1]
|
97 |
+
right = left + tile_frame.shape[1]
|
98 |
+
merge_frame[top:bottom, left:right, :] = tile_frame
|
99 |
+
merge_frame = merge_frame[size[1] : size[1] + temp_height, size[1]: size[1] + temp_width, :]
|
100 |
+
return merge_frame
|
101 |
+
|
102 |
+
|
103 |
+
def Run(self, temp_frame: Frame) -> Frame:
|
104 |
+
size = (128, 8, 2)
|
105 |
+
temp_height, temp_width = temp_frame.shape[:2]
|
106 |
+
upscale_tile_frames, pad_width, pad_height = self.create_tile_frames(temp_frame, size)
|
107 |
+
|
108 |
+
for index, tile_frame in enumerate(upscale_tile_frames):
|
109 |
+
tile_frame = self.prepare_tile_frame(tile_frame)
|
110 |
+
with conditional_thread_semaphore():
|
111 |
+
self.io_binding.bind_cpu_input(self.model_inputs[0].name, tile_frame)
|
112 |
+
self.model_upscale.run_with_iobinding(self.io_binding)
|
113 |
+
ort_outs = self.io_binding.copy_outputs_to_cpu()
|
114 |
+
result = ort_outs[0]
|
115 |
+
upscale_tile_frames[index] = self.normalize_tile_frame(result)
|
116 |
+
final_frame = self.merge_tile_frames(upscale_tile_frames, temp_width * self.scale
|
117 |
+
, temp_height * self.scale
|
118 |
+
, pad_width * self.scale, pad_height * self.scale
|
119 |
+
, (size[0] * self.scale, size[1] * self.scale, size[2] * self.scale))
|
120 |
+
return final_frame.astype(np.uint8)
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
def Release(self):
|
125 |
+
del self.model_upscale
|
126 |
+
self.model_upscale = None
|
127 |
+
del self.io_binding
|
128 |
+
self.io_binding = None
|
129 |
+
|
roop/processors/Mask_Clip2Seg.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import threading
|
5 |
+
from torchvision import transforms
|
6 |
+
from clip.clipseg import CLIPDensePredT
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from roop.typing import Frame
|
10 |
+
|
11 |
+
THREAD_LOCK_CLIP = threading.Lock()
|
12 |
+
|
13 |
+
|
14 |
+
class Mask_Clip2Seg():
|
15 |
+
plugin_options:dict = None
|
16 |
+
model_clip = None
|
17 |
+
|
18 |
+
processorname = 'clip2seg'
|
19 |
+
type = 'mask'
|
20 |
+
|
21 |
+
|
22 |
+
def Initialize(self, plugin_options:dict):
|
23 |
+
if self.plugin_options is not None:
|
24 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
25 |
+
self.Release()
|
26 |
+
|
27 |
+
self.plugin_options = plugin_options
|
28 |
+
if self.model_clip is None:
|
29 |
+
self.model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True)
|
30 |
+
self.model_clip.eval();
|
31 |
+
self.model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False)
|
32 |
+
|
33 |
+
device = torch.device(self.plugin_options["devicename"])
|
34 |
+
self.model_clip.to(device)
|
35 |
+
|
36 |
+
|
37 |
+
def Run(self, img1, keywords:str) -> Frame:
|
38 |
+
if keywords is None or len(keywords) < 1 or img1 is None:
|
39 |
+
return img1
|
40 |
+
|
41 |
+
source_image_small = cv2.resize(img1, (256,256))
|
42 |
+
|
43 |
+
img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32)
|
44 |
+
mask_border = 1
|
45 |
+
l = 0
|
46 |
+
t = 0
|
47 |
+
r = 1
|
48 |
+
b = 1
|
49 |
+
|
50 |
+
mask_blur = 5
|
51 |
+
clip_blur = 5
|
52 |
+
|
53 |
+
img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)),
|
54 |
+
(256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1)
|
55 |
+
img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0)
|
56 |
+
img_mask /= 255
|
57 |
+
|
58 |
+
|
59 |
+
input_image = source_image_small
|
60 |
+
|
61 |
+
transform = transforms.Compose([
|
62 |
+
transforms.ToTensor(),
|
63 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
64 |
+
transforms.Resize((256, 256)),
|
65 |
+
])
|
66 |
+
img = transform(input_image).unsqueeze(0)
|
67 |
+
|
68 |
+
thresh = 0.5
|
69 |
+
prompts = keywords.split(',')
|
70 |
+
with THREAD_LOCK_CLIP:
|
71 |
+
with torch.no_grad():
|
72 |
+
preds = self.model_clip(img.repeat(len(prompts),1,1,1), prompts)[0]
|
73 |
+
clip_mask = torch.sigmoid(preds[0][0])
|
74 |
+
for i in range(len(prompts)-1):
|
75 |
+
clip_mask += torch.sigmoid(preds[i+1][0])
|
76 |
+
|
77 |
+
clip_mask = clip_mask.data.cpu().numpy()
|
78 |
+
np.clip(clip_mask, 0, 1)
|
79 |
+
|
80 |
+
clip_mask[clip_mask>thresh] = 1.0
|
81 |
+
clip_mask[clip_mask<=thresh] = 0.0
|
82 |
+
kernel = np.ones((5, 5), np.float32)
|
83 |
+
clip_mask = cv2.dilate(clip_mask, kernel, iterations=1)
|
84 |
+
clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0)
|
85 |
+
|
86 |
+
img_mask *= clip_mask
|
87 |
+
img_mask[img_mask<0.0] = 0.0
|
88 |
+
return img_mask
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
def Release(self):
|
93 |
+
self.model_clip = None
|
94 |
+
|
roop/processors/Mask_XSeg.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import onnxruntime
|
4 |
+
import roop.globals
|
5 |
+
|
6 |
+
from roop.typing import Frame
|
7 |
+
from roop.utilities import resolve_relative_path, conditional_thread_semaphore
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class Mask_XSeg():
|
12 |
+
plugin_options:dict = None
|
13 |
+
|
14 |
+
model_xseg = None
|
15 |
+
|
16 |
+
processorname = 'mask_xseg'
|
17 |
+
type = 'mask'
|
18 |
+
|
19 |
+
|
20 |
+
def Initialize(self, plugin_options:dict):
|
21 |
+
if self.plugin_options is not None:
|
22 |
+
if self.plugin_options["devicename"] != plugin_options["devicename"]:
|
23 |
+
self.Release()
|
24 |
+
|
25 |
+
self.plugin_options = plugin_options
|
26 |
+
if self.model_xseg is None:
|
27 |
+
model_path = resolve_relative_path('../models/xseg.onnx')
|
28 |
+
onnxruntime.set_default_logger_severity(3)
|
29 |
+
self.model_xseg = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
|
30 |
+
self.model_inputs = self.model_xseg.get_inputs()
|
31 |
+
self.model_outputs = self.model_xseg.get_outputs()
|
32 |
+
|
33 |
+
# replace Mac mps with cpu for the moment
|
34 |
+
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
|
35 |
+
|
36 |
+
|
37 |
+
def Run(self, img1, keywords:str) -> Frame:
|
38 |
+
temp_frame = cv2.resize(img1, (256, 256), cv2.INTER_CUBIC)
|
39 |
+
temp_frame = temp_frame.astype('float32') / 255.0
|
40 |
+
temp_frame = temp_frame[None, ...]
|
41 |
+
io_binding = self.model_xseg.io_binding()
|
42 |
+
io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame)
|
43 |
+
io_binding.bind_output(self.model_outputs[0].name, self.devicename)
|
44 |
+
self.model_xseg.run_with_iobinding(io_binding)
|
45 |
+
ort_outs = io_binding.copy_outputs_to_cpu()
|
46 |
+
result = ort_outs[0][0]
|
47 |
+
result = np.clip(result, 0, 1.0)
|
48 |
+
result[result < 0.1] = 0
|
49 |
+
# invert values to mask areas to keep
|
50 |
+
result = 1.0 - result
|
51 |
+
return result
|
52 |
+
|
53 |
+
|
54 |
+
def Release(self):
|
55 |
+
del self.model_xseg
|
56 |
+
self.model_xseg = None
|
57 |
+
|
58 |
+
|
roop/processors/__init__.py
ADDED
File without changes
|
roop/template_parser.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from datetime import datetime
|
3 |
+
|
4 |
+
template_functions = {
|
5 |
+
"timestamp": lambda data: str(int(datetime.now().timestamp())),
|
6 |
+
"i": lambda data: data.get("index", False),
|
7 |
+
"file": lambda data: data.get("file", False),
|
8 |
+
"date": lambda data: datetime.now().strftime("%Y-%m-%d"),
|
9 |
+
"time": lambda data: datetime.now().strftime("%H-%M-%S"),
|
10 |
+
}
|
11 |
+
|
12 |
+
|
13 |
+
def parse(text: str, data: dict):
|
14 |
+
pattern = r"\{([^}]+)\}"
|
15 |
+
|
16 |
+
matches = re.findall(pattern, text)
|
17 |
+
|
18 |
+
for match in matches:
|
19 |
+
replacement = template_functions[match](data)
|
20 |
+
if replacement is not False:
|
21 |
+
text = text.replace(f"{{{match}}}", replacement)
|
22 |
+
|
23 |
+
return text
|
roop/typing.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from insightface.app.common import Face
|
4 |
+
from roop.FaceSet import FaceSet
|
5 |
+
import numpy
|
6 |
+
|
7 |
+
Face = Face
|
8 |
+
FaceSet = FaceSet
|
9 |
+
Frame = numpy.ndarray[Any, Any]
|
roop/util_ffmpeg.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
+
import roop.globals
|
5 |
+
import roop.utilities as util
|
6 |
+
|
7 |
+
from typing import List, Any
|
8 |
+
|
9 |
+
def run_ffmpeg(args: List[str]) -> bool:
|
10 |
+
commands = ['ffmpeg', '-hide_banner', '-hwaccel', 'auto', '-y', '-loglevel', roop.globals.log_level]
|
11 |
+
commands.extend(args)
|
12 |
+
print ("Running ffmpeg")
|
13 |
+
try:
|
14 |
+
subprocess.check_output(commands, stderr=subprocess.STDOUT)
|
15 |
+
return True
|
16 |
+
except Exception as e:
|
17 |
+
print("Running ffmpeg failed! Commandline:")
|
18 |
+
print (" ".join(commands))
|
19 |
+
return False
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
def cut_video(original_video: str, cut_video: str, start_frame: int, end_frame: int, reencode: bool):
|
24 |
+
fps = util.detect_fps(original_video)
|
25 |
+
start_time = start_frame / fps
|
26 |
+
num_frames = end_frame - start_frame
|
27 |
+
|
28 |
+
if reencode:
|
29 |
+
run_ffmpeg(['-ss', format(start_time, ".2f"), '-i', original_video, '-c:v', roop.globals.video_encoder, '-c:a', 'aac', '-frames:v', str(num_frames), cut_video])
|
30 |
+
else:
|
31 |
+
run_ffmpeg(['-ss', format(start_time, ".2f"), '-i', original_video, '-frames:v', str(num_frames), '-c:v' ,'copy','-c:a' ,'copy', cut_video])
|
32 |
+
|
33 |
+
def join_videos(videos: List[str], dest_filename: str, simple: bool):
|
34 |
+
if simple:
|
35 |
+
txtfilename = util.resolve_relative_path('../temp')
|
36 |
+
txtfilename = os.path.join(txtfilename, 'joinvids.txt')
|
37 |
+
with open(txtfilename, "w", encoding="utf-8") as f:
|
38 |
+
for v in videos:
|
39 |
+
v = v.replace('\\', '/')
|
40 |
+
f.write(f"file {v}\n")
|
41 |
+
commands = ['-f', 'concat', '-safe', '0', '-i', f'{txtfilename}', '-vcodec', 'copy', f'{dest_filename}']
|
42 |
+
run_ffmpeg(commands)
|
43 |
+
|
44 |
+
else:
|
45 |
+
inputs = []
|
46 |
+
filter = ''
|
47 |
+
for i,v in enumerate(videos):
|
48 |
+
inputs.append('-i')
|
49 |
+
inputs.append(v)
|
50 |
+
filter += f'[{i}:v:0][{i}:a:0]'
|
51 |
+
run_ffmpeg([" ".join(inputs), '-filter_complex', f'"{filter}concat=n={len(videos)}:v=1:a=1[outv][outa]"', '-map', '"[outv]"', '-map', '"[outa]"', dest_filename])
|
52 |
+
|
53 |
+
# filter += f'[{i}:v:0][{i}:a:0]'
|
54 |
+
# run_ffmpeg([" ".join(inputs), '-filter_complex', f'"{filter}concat=n={len(videos)}:v=1:a=1[outv][outa]"', '-map', '"[outv]"', '-map', '"[outa]"', dest_filename])
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
def extract_frames(target_path : str, trim_frame_start, trim_frame_end, fps : float) -> bool:
|
59 |
+
util.create_temp(target_path)
|
60 |
+
temp_directory_path = util.get_temp_directory_path(target_path)
|
61 |
+
commands = ['-i', target_path, '-q:v', '1', '-pix_fmt', 'rgb24', ]
|
62 |
+
if trim_frame_start is not None and trim_frame_end is not None:
|
63 |
+
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
|
64 |
+
commands.extend(['-vsync', '0', os.path.join(temp_directory_path, '%06d.' + roop.globals.CFG.output_image_format)])
|
65 |
+
return run_ffmpeg(commands)
|
66 |
+
|
67 |
+
|
68 |
+
def create_video(target_path: str, dest_filename: str, fps: float = 24.0, temp_directory_path: str = None) -> None:
|
69 |
+
if temp_directory_path is None:
|
70 |
+
temp_directory_path = util.get_temp_directory_path(target_path)
|
71 |
+
run_ffmpeg(['-r', str(fps), '-i', os.path.join(temp_directory_path, f'%06d.{roop.globals.CFG.output_image_format}'), '-c:v', roop.globals.video_encoder, '-crf', str(roop.globals.video_quality), '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625:fast=1', '-y', dest_filename])
|
72 |
+
return dest_filename
|
73 |
+
|
74 |
+
|
75 |
+
def create_gif_from_video(video_path: str, gif_path):
|
76 |
+
from roop.capturer import get_video_frame, release_video
|
77 |
+
|
78 |
+
fps = util.detect_fps(video_path)
|
79 |
+
frame = get_video_frame(video_path)
|
80 |
+
release_video()
|
81 |
+
|
82 |
+
scalex = frame.shape[0]
|
83 |
+
scaley = frame.shape[1]
|
84 |
+
|
85 |
+
if scalex >= scaley:
|
86 |
+
scaley = -1
|
87 |
+
else:
|
88 |
+
scalex = -1
|
89 |
+
|
90 |
+
run_ffmpeg(['-i', video_path, '-vf', f'fps={fps},scale={int(scalex)}:{int(scaley)}:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse', '-loop', '0', gif_path])
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def create_video_from_gif(gif_path: str, output_path):
|
95 |
+
fps = util.detect_fps(gif_path)
|
96 |
+
filter = """scale='trunc(in_w/2)*2':'trunc(in_h/2)*2',format=yuv420p,fps=10"""
|
97 |
+
run_ffmpeg(['-i', gif_path, '-vf', f'"{filter}"', '-movflags', '+faststart', '-shortest', output_path])
|
98 |
+
|
99 |
+
|
100 |
+
def repair_video(original_video: str, final_video : str):
|
101 |
+
run_ffmpeg(['-i', original_video, '-movflags', 'faststart', '-acodec', 'copy', '-vcodec', 'copy', final_video])
|
102 |
+
|
103 |
+
|
104 |
+
def restore_audio(intermediate_video: str, original_video: str, trim_frame_start, trim_frame_end, final_video : str) -> None:
|
105 |
+
fps = util.detect_fps(original_video)
|
106 |
+
commands = [ '-i', intermediate_video ]
|
107 |
+
if trim_frame_start is None and trim_frame_end is None:
|
108 |
+
commands.extend([ '-c:a', 'copy' ])
|
109 |
+
else:
|
110 |
+
# if trim_frame_start is not None:
|
111 |
+
# start_time = trim_frame_start / fps
|
112 |
+
# commands.extend([ '-ss', format(start_time, ".2f")])
|
113 |
+
# else:
|
114 |
+
# commands.extend([ '-ss', '0' ])
|
115 |
+
# if trim_frame_end is not None:
|
116 |
+
# end_time = trim_frame_end / fps
|
117 |
+
# commands.extend([ '-to', format(end_time, ".2f")])
|
118 |
+
# commands.extend([ '-c:a', 'aac' ])
|
119 |
+
if trim_frame_start is not None:
|
120 |
+
start_time = trim_frame_start / fps
|
121 |
+
commands.extend([ '-ss', format(start_time, ".2f")])
|
122 |
+
else:
|
123 |
+
commands.extend([ '-ss', '0' ])
|
124 |
+
if trim_frame_end is not None:
|
125 |
+
end_time = trim_frame_end / fps
|
126 |
+
commands.extend([ '-to', format(end_time, ".2f")])
|
127 |
+
commands.extend([ '-i', original_video, "-c", "copy" ])
|
128 |
+
|
129 |
+
commands.extend([ '-map', '0:v:0', '-map', '1:a:0?', '-shortest', final_video ])
|
130 |
+
run_ffmpeg(commands)
|
roop/utilities.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import mimetypes
|
3 |
+
import os
|
4 |
+
import platform
|
5 |
+
import shutil
|
6 |
+
import ssl
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
import urllib
|
10 |
+
import torch
|
11 |
+
import gradio
|
12 |
+
import tempfile
|
13 |
+
import cv2
|
14 |
+
import zipfile
|
15 |
+
import traceback
|
16 |
+
import threading
|
17 |
+
import threading
|
18 |
+
|
19 |
+
from typing import Union, Any
|
20 |
+
from contextlib import nullcontext
|
21 |
+
|
22 |
+
from pathlib import Path
|
23 |
+
from typing import List, Any
|
24 |
+
from tqdm import tqdm
|
25 |
+
from scipy.spatial import distance
|
26 |
+
|
27 |
+
import roop.template_parser as template_parser
|
28 |
+
|
29 |
+
import roop.globals
|
30 |
+
|
31 |
+
TEMP_FILE = "temp.mp4"
|
32 |
+
TEMP_DIRECTORY = "temp"
|
33 |
+
|
34 |
+
THREAD_SEMAPHORE = threading.Semaphore()
|
35 |
+
NULL_CONTEXT = nullcontext()
|
36 |
+
|
37 |
+
|
38 |
+
# monkey patch ssl for mac
|
39 |
+
if platform.system().lower() == "darwin":
|
40 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
41 |
+
|
42 |
+
|
43 |
+
# https://github.com/facefusion/facefusion/blob/master/facefusion
|
44 |
+
def detect_fps(target_path: str) -> float:
|
45 |
+
fps = 24.0
|
46 |
+
cap = cv2.VideoCapture(target_path)
|
47 |
+
if cap.isOpened():
|
48 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
49 |
+
cap.release()
|
50 |
+
return fps
|
51 |
+
|
52 |
+
|
53 |
+
# Gradio wants Images in RGB
|
54 |
+
def convert_to_gradio(image):
|
55 |
+
if image is None:
|
56 |
+
return None
|
57 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
58 |
+
|
59 |
+
|
60 |
+
def sort_filenames_ignore_path(filenames):
|
61 |
+
"""Sorts a list of filenames containing a complete path by their filename,
|
62 |
+
while retaining their original path.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
filenames: A list of filenames containing a complete path.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
A sorted list of filenames containing a complete path.
|
69 |
+
"""
|
70 |
+
filename_path_tuples = [
|
71 |
+
(os.path.split(filename)[1], filename) for filename in filenames
|
72 |
+
]
|
73 |
+
sorted_filename_path_tuples = sorted(filename_path_tuples, key=lambda x: x[0])
|
74 |
+
return [
|
75 |
+
filename_path_tuple[1] for filename_path_tuple in sorted_filename_path_tuples
|
76 |
+
]
|
77 |
+
|
78 |
+
|
79 |
+
def sort_rename_frames(path: str):
|
80 |
+
filenames = os.listdir(path)
|
81 |
+
filenames.sort()
|
82 |
+
for i in range(len(filenames)):
|
83 |
+
of = os.path.join(path, filenames[i])
|
84 |
+
newidx = i + 1
|
85 |
+
new_filename = os.path.join(
|
86 |
+
path, f"{newidx:06d}." + roop.globals.CFG.output_image_format
|
87 |
+
)
|
88 |
+
os.rename(of, new_filename)
|
89 |
+
|
90 |
+
|
91 |
+
def get_temp_frame_paths(target_path: str) -> List[str]:
|
92 |
+
temp_directory_path = get_temp_directory_path(target_path)
|
93 |
+
return glob.glob(
|
94 |
+
(
|
95 |
+
os.path.join(
|
96 |
+
glob.escape(temp_directory_path),
|
97 |
+
f"*.{roop.globals.CFG.output_image_format}",
|
98 |
+
)
|
99 |
+
)
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
def get_temp_directory_path(target_path: str) -> str:
|
104 |
+
target_name, _ = os.path.splitext(os.path.basename(target_path))
|
105 |
+
target_directory_path = os.path.dirname(target_path)
|
106 |
+
return os.path.join(target_directory_path, TEMP_DIRECTORY, target_name)
|
107 |
+
|
108 |
+
|
109 |
+
def get_temp_output_path(target_path: str) -> str:
|
110 |
+
temp_directory_path = get_temp_directory_path(target_path)
|
111 |
+
return os.path.join(temp_directory_path, TEMP_FILE)
|
112 |
+
|
113 |
+
|
114 |
+
def normalize_output_path(source_path: str, target_path: str, output_path: str) -> Any:
|
115 |
+
if source_path and target_path:
|
116 |
+
source_name, _ = os.path.splitext(os.path.basename(source_path))
|
117 |
+
target_name, target_extension = os.path.splitext(os.path.basename(target_path))
|
118 |
+
if os.path.isdir(output_path):
|
119 |
+
return os.path.join(
|
120 |
+
output_path, source_name + "-" + target_name + target_extension
|
121 |
+
)
|
122 |
+
return output_path
|
123 |
+
|
124 |
+
|
125 |
+
def get_destfilename_from_path(
|
126 |
+
srcfilepath: str, destfilepath: str, extension: str
|
127 |
+
) -> str:
|
128 |
+
fn, ext = os.path.splitext(os.path.basename(srcfilepath))
|
129 |
+
if "." in extension:
|
130 |
+
return os.path.join(destfilepath, f"{fn}{extension}")
|
131 |
+
return os.path.join(destfilepath, f"{fn}{extension}{ext}")
|
132 |
+
|
133 |
+
|
134 |
+
def replace_template(file_path: str, index: int = 0) -> str:
|
135 |
+
fn, ext = os.path.splitext(os.path.basename(file_path))
|
136 |
+
|
137 |
+
# Remove the "__temp" placeholder that was used as a temporary filename
|
138 |
+
fn = fn.replace("__temp", "")
|
139 |
+
|
140 |
+
template = roop.globals.CFG.output_template
|
141 |
+
replaced_filename = template_parser.parse(
|
142 |
+
template, {"index": str(index), "file": fn}
|
143 |
+
)
|
144 |
+
|
145 |
+
return os.path.join(roop.globals.output_path, f"{replaced_filename}{ext}")
|
146 |
+
|
147 |
+
|
148 |
+
def create_temp(target_path: str) -> None:
|
149 |
+
temp_directory_path = get_temp_directory_path(target_path)
|
150 |
+
Path(temp_directory_path).mkdir(parents=True, exist_ok=True)
|
151 |
+
|
152 |
+
|
153 |
+
def move_temp(target_path: str, output_path: str) -> None:
|
154 |
+
temp_output_path = get_temp_output_path(target_path)
|
155 |
+
if os.path.isfile(temp_output_path):
|
156 |
+
if os.path.isfile(output_path):
|
157 |
+
os.remove(output_path)
|
158 |
+
shutil.move(temp_output_path, output_path)
|
159 |
+
|
160 |
+
|
161 |
+
def clean_temp(target_path: str) -> None:
|
162 |
+
temp_directory_path = get_temp_directory_path(target_path)
|
163 |
+
parent_directory_path = os.path.dirname(temp_directory_path)
|
164 |
+
if not roop.globals.keep_frames and os.path.isdir(temp_directory_path):
|
165 |
+
shutil.rmtree(temp_directory_path)
|
166 |
+
if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path):
|
167 |
+
os.rmdir(parent_directory_path)
|
168 |
+
|
169 |
+
|
170 |
+
def delete_temp_frames(filename: str) -> None:
|
171 |
+
dir = os.path.dirname(os.path.dirname(filename))
|
172 |
+
shutil.rmtree(dir)
|
173 |
+
|
174 |
+
|
175 |
+
def has_image_extension(image_path: str) -> bool:
|
176 |
+
return image_path.lower().endswith(("png", "jpg", "jpeg", "webp"))
|
177 |
+
|
178 |
+
|
179 |
+
def has_extension(filepath: str, extensions: List[str]) -> bool:
|
180 |
+
return filepath.lower().endswith(tuple(extensions))
|
181 |
+
|
182 |
+
|
183 |
+
def is_image(image_path: str) -> bool:
|
184 |
+
if image_path and os.path.isfile(image_path):
|
185 |
+
if image_path.endswith(".webp"):
|
186 |
+
return True
|
187 |
+
mimetype, _ = mimetypes.guess_type(image_path)
|
188 |
+
return bool(mimetype and mimetype.startswith("image/"))
|
189 |
+
return False
|
190 |
+
|
191 |
+
|
192 |
+
def is_video(video_path: str) -> bool:
|
193 |
+
if video_path and os.path.isfile(video_path):
|
194 |
+
mimetype, _ = mimetypes.guess_type(video_path)
|
195 |
+
return bool(mimetype and mimetype.startswith("video/"))
|
196 |
+
return False
|
197 |
+
|
198 |
+
|
199 |
+
def conditional_download(download_directory_path: str, urls: List[str]) -> None:
|
200 |
+
if not os.path.exists(download_directory_path):
|
201 |
+
os.makedirs(download_directory_path)
|
202 |
+
for url in urls:
|
203 |
+
download_file_path = os.path.join(
|
204 |
+
download_directory_path, os.path.basename(url)
|
205 |
+
)
|
206 |
+
if not os.path.exists(download_file_path):
|
207 |
+
request = urllib.request.urlopen(url) # type: ignore[attr-defined]
|
208 |
+
total = int(request.headers.get("Content-Length", 0))
|
209 |
+
with tqdm(
|
210 |
+
total=total,
|
211 |
+
desc=f"Downloading {url}",
|
212 |
+
unit="B",
|
213 |
+
unit_scale=True,
|
214 |
+
unit_divisor=1024,
|
215 |
+
) as progress:
|
216 |
+
urllib.request.urlretrieve(url, download_file_path, reporthook=lambda count, block_size, total_size: progress.update(block_size)) # type: ignore[attr-defined]
|
217 |
+
|
218 |
+
|
219 |
+
def get_local_files_from_folder(folder: str) -> List[str]:
|
220 |
+
if not os.path.exists(folder) or not os.path.isdir(folder):
|
221 |
+
return None
|
222 |
+
files = [
|
223 |
+
os.path.join(folder, f)
|
224 |
+
for f in os.listdir(folder)
|
225 |
+
if os.path.isfile(os.path.join(folder, f))
|
226 |
+
]
|
227 |
+
return files
|
228 |
+
|
229 |
+
|
230 |
+
def resolve_relative_path(path: str) -> str:
|
231 |
+
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
|
232 |
+
|
233 |
+
|
234 |
+
def get_device() -> str:
|
235 |
+
if len(roop.globals.execution_providers) < 1:
|
236 |
+
roop.globals.execution_providers = ["CPUExecutionProvider"]
|
237 |
+
|
238 |
+
prov = roop.globals.execution_providers[0]
|
239 |
+
if "CoreMLExecutionProvider" in prov:
|
240 |
+
return "mps"
|
241 |
+
if "CUDAExecutionProvider" in prov or "ROCMExecutionProvider" in prov:
|
242 |
+
return "cuda"
|
243 |
+
if "OpenVINOExecutionProvider" in prov:
|
244 |
+
return "mkl"
|
245 |
+
return "cpu"
|
246 |
+
|
247 |
+
|
248 |
+
def str_to_class(module_name, class_name) -> Any:
|
249 |
+
from importlib import import_module
|
250 |
+
|
251 |
+
class_ = None
|
252 |
+
try:
|
253 |
+
module_ = import_module(module_name)
|
254 |
+
try:
|
255 |
+
class_ = getattr(module_, class_name)()
|
256 |
+
except AttributeError:
|
257 |
+
print(f"Class {class_name} does not exist")
|
258 |
+
except ImportError:
|
259 |
+
print(f"Module {module_name} does not exist")
|
260 |
+
return class_
|
261 |
+
|
262 |
+
def is_installed(name:str) -> bool:
|
263 |
+
return shutil.which(name);
|
264 |
+
|
265 |
+
# Taken from https://stackoverflow.com/a/68842705
|
266 |
+
def get_platform() -> str:
|
267 |
+
if sys.platform == "linux":
|
268 |
+
try:
|
269 |
+
proc_version = open("/proc/version").read()
|
270 |
+
if "Microsoft" in proc_version:
|
271 |
+
return "wsl"
|
272 |
+
except:
|
273 |
+
pass
|
274 |
+
return sys.platform
|
275 |
+
|
276 |
+
def open_with_default_app(filename:str):
|
277 |
+
if filename == None:
|
278 |
+
return
|
279 |
+
platform = get_platform()
|
280 |
+
if platform == "darwin":
|
281 |
+
subprocess.call(("open", filename))
|
282 |
+
elif platform in ["win64", "win32"]: os.startfile(filename.replace("/", "\\"))
|
283 |
+
elif platform == "wsl":
|
284 |
+
subprocess.call("cmd.exe /C start".split() + [filename])
|
285 |
+
else: # linux variants
|
286 |
+
subprocess.call("xdg-open", filename)
|
287 |
+
|
288 |
+
|
289 |
+
def prepare_for_batch(target_files) -> str:
|
290 |
+
print("Preparing temp files")
|
291 |
+
tempfolder = os.path.join(tempfile.gettempdir(), "rooptmp")
|
292 |
+
if os.path.exists(tempfolder):
|
293 |
+
shutil.rmtree(tempfolder)
|
294 |
+
Path(tempfolder).mkdir(parents=True, exist_ok=True)
|
295 |
+
for f in target_files:
|
296 |
+
newname = os.path.basename(f.name)
|
297 |
+
shutil.move(f.name, os.path.join(tempfolder, newname))
|
298 |
+
return tempfolder
|
299 |
+
|
300 |
+
|
301 |
+
def zip(files, zipname):
|
302 |
+
with zipfile.ZipFile(zipname, "w") as zip_file:
|
303 |
+
for f in files:
|
304 |
+
zip_file.write(f, os.path.basename(f))
|
305 |
+
|
306 |
+
|
307 |
+
def unzip(zipfilename: str, target_path: str):
|
308 |
+
with zipfile.ZipFile(zipfilename, "r") as zip_file:
|
309 |
+
zip_file.extractall(target_path)
|
310 |
+
|
311 |
+
|
312 |
+
def mkdir_with_umask(directory):
|
313 |
+
oldmask = os.umask(0)
|
314 |
+
# mode needs octal
|
315 |
+
os.makedirs(directory, mode=0o775, exist_ok=True)
|
316 |
+
os.umask(oldmask)
|
317 |
+
|
318 |
+
|
319 |
+
def open_folder(path: str):
|
320 |
+
platform = get_platform()
|
321 |
+
try:
|
322 |
+
if platform == "darwin":
|
323 |
+
subprocess.call(("open", path))
|
324 |
+
elif platform in ["win64", "win32"]:
|
325 |
+
open_with_default_app(path)
|
326 |
+
elif platform == "wsl":
|
327 |
+
subprocess.call("cmd.exe /C start".split() + [path])
|
328 |
+
else: # linux variants
|
329 |
+
subprocess.Popen(["xdg-open", path])
|
330 |
+
except Exception as e:
|
331 |
+
traceback.print_exc()
|
332 |
+
pass
|
333 |
+
# import webbrowser
|
334 |
+
# webbrowser.open(url)
|
335 |
+
|
336 |
+
|
337 |
+
def create_version_html() -> str:
|
338 |
+
python_version = ".".join([str(x) for x in sys.version_info[0:3]])
|
339 |
+
versions_html = f"""
|
340 |
+
python: <span title="{sys.version}">{python_version}</span>
|
341 |
+
•
|
342 |
+
torch: {getattr(torch, '__long_version__',torch.__version__)}
|
343 |
+
•
|
344 |
+
gradio: {gradio.__version__}
|
345 |
+
"""
|
346 |
+
return versions_html
|
347 |
+
|
348 |
+
|
349 |
+
def compute_cosine_distance(emb1, emb2) -> float:
|
350 |
+
return distance.cosine(emb1, emb2)
|
351 |
+
|
352 |
+
def has_cuda_device():
|
353 |
+
return torch.cuda is not None and torch.cuda.is_available()
|
354 |
+
|
355 |
+
|
356 |
+
def print_cuda_info():
|
357 |
+
try:
|
358 |
+
print(f'Number of CUDA devices: {torch.cuda.device_count()} Currently used Id: {torch.cuda.current_device()} Device Name: {torch.cuda.get_device_name(torch.cuda.current_device())}')
|
359 |
+
except:
|
360 |
+
print('No CUDA device found!')
|
361 |
+
|
362 |
+
def clean_dir(path: str):
|
363 |
+
contents = os.listdir(path)
|
364 |
+
for item in contents:
|
365 |
+
item_path = os.path.join(path, item)
|
366 |
+
try:
|
367 |
+
if os.path.isfile(item_path):
|
368 |
+
os.remove(item_path)
|
369 |
+
elif os.path.isdir(item_path):
|
370 |
+
shutil.rmtree(item_path)
|
371 |
+
except Exception as e:
|
372 |
+
print(e)
|
373 |
+
|
374 |
+
|
375 |
+
def conditional_thread_semaphore() -> Union[Any, Any]:
|
376 |
+
if 'DmlExecutionProvider' in roop.globals.execution_providers or 'ROCMExecutionProvider' in roop.globals.execution_providers:
|
377 |
+
return THREAD_SEMAPHORE
|
378 |
+
return NULL_CONTEXT
|
roop/virtualcam.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import roop.globals
|
3 |
+
import ui.globals
|
4 |
+
import pyvirtualcam
|
5 |
+
import threading
|
6 |
+
import platform
|
7 |
+
|
8 |
+
|
9 |
+
cam_active = False
|
10 |
+
cam_thread = None
|
11 |
+
vcam = None
|
12 |
+
|
13 |
+
def virtualcamera(streamobs, use_xseg, use_mouthrestore, cam_num,width,height):
|
14 |
+
from roop.ProcessOptions import ProcessOptions
|
15 |
+
from roop.core import live_swap, get_processing_plugins
|
16 |
+
|
17 |
+
global cam_active
|
18 |
+
|
19 |
+
#time.sleep(2)
|
20 |
+
print('Starting capture')
|
21 |
+
cap = cv2.VideoCapture(cam_num, cv2.CAP_DSHOW if platform.system() != 'Darwin' else cv2.CAP_AVFOUNDATION)
|
22 |
+
if not cap.isOpened():
|
23 |
+
print("Cannot open camera")
|
24 |
+
cap.release()
|
25 |
+
del cap
|
26 |
+
return
|
27 |
+
|
28 |
+
pref_width = width
|
29 |
+
pref_height = height
|
30 |
+
pref_fps_in = 30
|
31 |
+
cap.set(cv2.CAP_PROP_FRAME_WIDTH, pref_width)
|
32 |
+
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, pref_height)
|
33 |
+
cap.set(cv2.CAP_PROP_FPS, pref_fps_in)
|
34 |
+
cam_active = True
|
35 |
+
|
36 |
+
# native format UYVY
|
37 |
+
|
38 |
+
cam = None
|
39 |
+
if streamobs:
|
40 |
+
print('Detecting virtual cam devices')
|
41 |
+
cam = pyvirtualcam.Camera(width=pref_width, height=pref_height, fps=pref_fps_in, fmt=pyvirtualcam.PixelFormat.BGR, print_fps=False)
|
42 |
+
if cam:
|
43 |
+
print(f'Using virtual camera: {cam.device}')
|
44 |
+
print(f'Using {cam.native_fmt}')
|
45 |
+
else:
|
46 |
+
print(f'Not streaming to virtual camera!')
|
47 |
+
subsample_size = roop.globals.subsample_size
|
48 |
+
|
49 |
+
|
50 |
+
options = ProcessOptions(get_processing_plugins("mask_xseg" if use_xseg else None), roop.globals.distance_threshold, roop.globals.blend_ratio,
|
51 |
+
"all", 0, None, None, 1, subsample_size, False, use_mouthrestore)
|
52 |
+
while cam_active:
|
53 |
+
ret, frame = cap.read()
|
54 |
+
if not ret:
|
55 |
+
break
|
56 |
+
|
57 |
+
if len(roop.globals.INPUT_FACESETS) > 0:
|
58 |
+
frame = live_swap(frame, options)
|
59 |
+
if cam:
|
60 |
+
cam.send(frame)
|
61 |
+
cam.sleep_until_next_frame()
|
62 |
+
ui.globals.ui_camera_frame = frame
|
63 |
+
|
64 |
+
if cam:
|
65 |
+
cam.close()
|
66 |
+
cap.release()
|
67 |
+
print('Camera stopped')
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def start_virtual_cam(streamobs, use_xseg, use_mouthrestore, cam_number, resolution):
|
72 |
+
global cam_thread, cam_active
|
73 |
+
|
74 |
+
if not cam_active:
|
75 |
+
width, height = map(int, resolution.split('x'))
|
76 |
+
cam_thread = threading.Thread(target=virtualcamera, args=[streamobs, use_xseg, use_mouthrestore, cam_number, width, height])
|
77 |
+
cam_thread.start()
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
def stop_virtual_cam():
|
82 |
+
global cam_active, cam_thread
|
83 |
+
|
84 |
+
if cam_active:
|
85 |
+
cam_active = False
|
86 |
+
cam_thread.join()
|
87 |
+
|
88 |
+
|
roop/vr_util.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
# VR Lense Distortion
|
5 |
+
# Taken from https://github.com/g0kuvonlange/vrswap
|
6 |
+
|
7 |
+
|
8 |
+
def get_perspective(img, FOV, THETA, PHI, height, width):
|
9 |
+
#
|
10 |
+
# THETA is left/right angle, PHI is up/down angle, both in degree
|
11 |
+
#
|
12 |
+
[orig_width, orig_height, _] = img.shape
|
13 |
+
equ_h = orig_height
|
14 |
+
equ_w = orig_width
|
15 |
+
equ_cx = (equ_w - 1) / 2.0
|
16 |
+
equ_cy = (equ_h - 1) / 2.0
|
17 |
+
|
18 |
+
wFOV = FOV
|
19 |
+
hFOV = float(height) / width * wFOV
|
20 |
+
|
21 |
+
w_len = np.tan(np.radians(wFOV / 2.0))
|
22 |
+
h_len = np.tan(np.radians(hFOV / 2.0))
|
23 |
+
|
24 |
+
x_map = np.ones([height, width], np.float32)
|
25 |
+
y_map = np.tile(np.linspace(-w_len, w_len, width), [height, 1])
|
26 |
+
z_map = -np.tile(np.linspace(-h_len, h_len, height), [width, 1]).T
|
27 |
+
|
28 |
+
D = np.sqrt(x_map**2 + y_map**2 + z_map**2)
|
29 |
+
xyz = np.stack((x_map, y_map, z_map), axis=2) / np.repeat(
|
30 |
+
D[:, :, np.newaxis], 3, axis=2
|
31 |
+
)
|
32 |
+
|
33 |
+
y_axis = np.array([0.0, 1.0, 0.0], np.float32)
|
34 |
+
z_axis = np.array([0.0, 0.0, 1.0], np.float32)
|
35 |
+
[R1, _] = cv2.Rodrigues(z_axis * np.radians(THETA))
|
36 |
+
[R2, _] = cv2.Rodrigues(np.dot(R1, y_axis) * np.radians(-PHI))
|
37 |
+
|
38 |
+
xyz = xyz.reshape([height * width, 3]).T
|
39 |
+
xyz = np.dot(R1, xyz)
|
40 |
+
xyz = np.dot(R2, xyz).T
|
41 |
+
lat = np.arcsin(xyz[:, 2])
|
42 |
+
lon = np.arctan2(xyz[:, 1], xyz[:, 0])
|
43 |
+
|
44 |
+
lon = lon.reshape([height, width]) / np.pi * 180
|
45 |
+
lat = -lat.reshape([height, width]) / np.pi * 180
|
46 |
+
|
47 |
+
lon = lon / 180 * equ_cx + equ_cx
|
48 |
+
lat = lat / 90 * equ_cy + equ_cy
|
49 |
+
|
50 |
+
persp = cv2.remap(
|
51 |
+
img,
|
52 |
+
lon.astype(np.float32),
|
53 |
+
lat.astype(np.float32),
|
54 |
+
cv2.INTER_CUBIC,
|
55 |
+
borderMode=cv2.BORDER_WRAP,
|
56 |
+
)
|
57 |
+
return persp
|