Spaces:
Runtime error
Runtime error
File size: 4,022 Bytes
4d7183d 5b45741 4d7183d 5b45741 4d7183d 5b45741 4d7183d 5b45741 4d7183d 5b45741 4d7183d 5b45741 4d7183d 5b45741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import json
from actions.duck_search import duckduckgo_search
from processing.text import read_txt_files
from agent.llm_utils import llm_response, llm_stream_response
from config import Config
from agent import prompts
import os
import string
CFG = Config()
class ResearchAgent:
def __init__(self, question, agent, system_prompt):
""" Initializes the research assistant with the given question.
Args: question (str): The question to research
Returns: None
"""
self.question = question
self.agent = agent
self.visited_urls = set()
self.search_summary = ""
self.directory_name = ''.join(c for c in question if c.isascii() and c not in string.punctuation)[:100]
self.dir_path = os.path.dirname(f"./outputs/{self.directory_name}/")
self.system_prompt = system_prompt
def call_agent(self, action):
messages = [{
"role": "system",
"content": self.system_prompt,
}, {
"role": "user",
"content": action,
}]
return llm_response(
model=CFG.fast_llm_model,
messages=messages,
)
def call_agent_stream(self, action):
messages = [{
"role": "system",
"content": self.system_prompt,
}, {
"role": "user",
"content": action,
}]
yield from llm_stream_response(
model=CFG.fast_llm_model,
messages=messages
)
def create_search_queries(self):
""" Creates the search queries for the given question.
Args: None
Returns: list[str]: The search queries for the given question
"""
result = self.call_agent(prompts.generate_search_queries_prompt(self.question))
return json.loads(result)
def search_single_query(self, query):
""" Runs the async search for the given query.
Args: query (str): The query to run the async search for
Returns: list[str]: The async search for the given query
"""
return duckduckgo_search(query, max_search_result=3)
def run_search_summary(self, query):
""" Runs the search summary for the given query.
Args: query (str): The query to run the search summary for
Returns: str: The search summary for the given query
"""
responses = self.search_single_query(query)
print(f"Searching for {query}")
query = hash(query)
file_path = f"./outputs/{self.directory_name}/research-{query}.txt"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w") as f:
json.dump(responses, f)
print(f"Saved {query} to {file_path}")
return responses
def search_online(self):
""" Conducts the search for the given question.
Args: None
Returns: str: The search results for the given question
"""
self.search_summary = read_txt_files(self.dir_path) if os.path.isdir(self.dir_path) else ""
if not self.search_summary:
search_queries = self.create_search_queries()
for _, query in search_queries.items():
search_result = self.run_search_summary(query)
self.search_summary += \
f"=Query=:\n{query}\n=Search Result=:\n{search_result}\n================\n"
return self.search_summary
def write_report(self, report_type, extra_prompt):
""" Writes the report for the given question.
Args: None
Returns: str: The report for the given question
"""
report_type_func = prompts.get_report_by_type(report_type)
yield from self.call_agent_stream(report_type_func(self.question,
self.search_online(),
extra_prompt))
|