File size: 17,121 Bytes
fb83c5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import gradio as gr
from typing import Tuple
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
class BasicTraining:
"""
This class configures and initializes the basic training settings for a machine learning model,
including options for SDXL, learning rate, learning rate scheduler, and training epochs.
Attributes:
sdxl_checkbox (gr.Checkbox): Checkbox to enable SDXL training.
learning_rate_value (str): Initial learning rate value.
lr_scheduler_value (str): Initial learning rate scheduler value.
lr_warmup_value (str): Initial learning rate warmup value.
finetuning (bool): If True, enables fine-tuning of the model.
dreambooth (bool): If True, enables Dreambooth training.
"""
def __init__(
self,
sdxl_checkbox: gr.Checkbox,
learning_rate_value: float = "1e-6",
lr_scheduler_value: str = "constant",
lr_warmup_value: float = "0",
finetuning: bool = False,
dreambooth: bool = False,
config: dict = {},
) -> None:
"""
Initializes the BasicTraining object with the given parameters.
Args:
sdxl_checkbox (gr.Checkbox): Checkbox to enable SDXL training.
learning_rate_value (str): Initial learning rate value.
lr_scheduler_value (str): Initial learning rate scheduler value.
lr_warmup_value (str): Initial learning rate warmup value.
finetuning (bool): If True, enables fine-tuning of the model.
dreambooth (bool): If True, enables Dreambooth training.
"""
self.sdxl_checkbox = sdxl_checkbox
self.learning_rate_value = learning_rate_value
self.lr_scheduler_value = lr_scheduler_value
self.lr_warmup_value = lr_warmup_value
self.finetuning = finetuning
self.dreambooth = dreambooth
self.config = config
self.old_lr_warmup = 0
# Initialize the UI components
self.initialize_ui_components()
def initialize_ui_components(self) -> None:
"""
Initializes the UI components for the training settings.
"""
# Initialize the training controls
self.init_training_controls()
# Initialize the precision and resources controls
self.init_precision_and_resources_controls()
# Initialize the learning rate and optimizer controls
self.init_lr_and_optimizer_controls()
# Initialize the gradient and learning rate controls
self.init_grad_and_lr_controls()
# Initialize the learning rate controls
self.init_learning_rate_controls()
# Initialize the scheduler controls
self.init_scheduler_controls()
# Initialize the resolution and bucket controls
self.init_resolution_and_bucket_controls()
# Setup the behavior of the SDXL checkbox
self.setup_sdxl_checkbox_behavior()
def init_training_controls(self) -> None:
"""
Initializes the training controls for the model.
"""
# Create a row for the training controls
with gr.Row():
# Initialize the train batch size slider
self.train_batch_size = gr.Slider(
minimum=1,
maximum=64,
label="Train batch size",
value=1,
step=self.config.get("basic.train_batch_size", 1),
)
# Initialize the epoch number input
self.epoch = gr.Number(
label="Epoch", value=self.config.get("basic.epoch", 1), precision=0
)
# Initialize the maximum train epochs input
self.max_train_epochs = gr.Number(
label="Max train epoch",
info="training epochs (overrides max_train_steps). 0 = no override",
step=1,
# precision=0,
minimum=0,
value=self.config.get("basic.max_train_epochs", 0),
)
# Initialize the maximum train steps input
self.max_train_steps = gr.Number(
label="Max train steps",
info="Overrides # training steps. 0 = no override",
step=1,
# precision=0,
value=self.config.get("basic.max_train_steps", 1600),
)
# Initialize the save every N epochs input
self.save_every_n_epochs = gr.Number(
label="Save every N epochs",
value=self.config.get("basic.save_every_n_epochs", 1),
precision=0,
)
# Initialize the caption extension input
self.caption_extension = gr.Dropdown(
label="Caption file extension",
choices=["", ".cap", ".caption", ".txt"],
value=".txt",
interactive=True,
)
def init_precision_and_resources_controls(self) -> None:
"""
Initializes the precision and resources controls for the model.
"""
with gr.Row():
# Initialize the seed textbox
self.seed = gr.Number(
label="Seed",
# precision=0,
step=1,
minimum=0,
value=self.config.get("basic.seed", 0),
info="Set to 0 to make random",
)
# Initialize the cache latents checkbox
self.cache_latents = gr.Checkbox(
label="Cache latents",
value=self.config.get("basic.cache_latents", True),
)
# Initialize the cache latents to disk checkbox
self.cache_latents_to_disk = gr.Checkbox(
label="Cache latents to disk",
value=self.config.get("basic.cache_latents_to_disk", False),
)
def init_lr_and_optimizer_controls(self) -> None:
"""
Initializes the learning rate and optimizer controls for the model.
"""
with gr.Row():
# Initialize the learning rate scheduler dropdown
self.lr_scheduler = gr.Dropdown(
label="LR Scheduler",
choices=[
"adafactor",
"constant",
"constant_with_warmup",
"cosine",
"cosine_with_restarts",
"linear",
"polynomial",
],
value=self.config.get("basic.lr_scheduler", self.lr_scheduler_value),
)
# Initialize the optimizer dropdown
self.optimizer = gr.Dropdown(
label="Optimizer",
choices=[
"AdamW",
"AdamW8bit",
"Adafactor",
"DAdaptation",
"DAdaptAdaGrad",
"DAdaptAdam",
"DAdaptAdan",
"DAdaptAdanIP",
"DAdaptAdamPreprint",
"DAdaptLion",
"DAdaptSGD",
"Lion",
"Lion8bit",
"PagedAdamW8bit",
"PagedAdamW32bit",
"PagedLion8bit",
"Prodigy",
"SGDNesterov",
"SGDNesterov8bit",
],
value=self.config.get("basic.optimizer", "AdamW8bit"),
interactive=True,
)
def init_grad_and_lr_controls(self) -> None:
"""
Initializes the gradient and learning rate controls for the model.
"""
with gr.Row():
# Initialize the maximum gradient norm slider
self.max_grad_norm = gr.Slider(
label="Max grad norm",
value=self.config.get("basic.max_grad_norm", 1.0),
minimum=0.0,
maximum=1.0,
interactive=True,
)
# Initialize the learning rate scheduler extra arguments textbox
self.lr_scheduler_args = gr.Textbox(
label="LR scheduler extra arguments",
lines=2,
placeholder="(Optional) eg: milestones=[1,10,30,50] gamma=0.1",
value=self.config.get("basic.lr_scheduler_args", ""),
)
# Initialize the optimizer extra arguments textbox
self.optimizer_args = gr.Textbox(
label="Optimizer extra arguments",
lines=2,
placeholder="(Optional) eg: relative_step=True scale_parameter=True warmup_init=True",
value=self.config.get("basic.optimizer_args", ""),
)
def init_learning_rate_controls(self) -> None:
"""
Initializes the learning rate controls for the model.
"""
with gr.Row():
# Adjust visibility based on training modes
lr_label = (
"Learning rate Unet"
if self.finetuning or self.dreambooth
else "Learning rate"
)
# Initialize the learning rate number input
self.learning_rate = gr.Number(
label=lr_label,
value=self.config.get("basic.learning_rate", self.learning_rate_value),
minimum=0,
maximum=1,
info="Set to 0 to not train the Unet",
)
# Initialize the learning rate TE number input
self.learning_rate_te = gr.Number(
label="Learning rate TE",
value=self.config.get(
"basic.learning_rate_te", self.learning_rate_value
),
visible=self.finetuning or self.dreambooth,
minimum=0,
maximum=1,
info="Set to 0 to not train the Text Encoder",
)
# Initialize the learning rate TE1 number input
self.learning_rate_te1 = gr.Number(
label="Learning rate TE1",
value=self.config.get(
"basic.learning_rate_te1", self.learning_rate_value
),
visible=False,
minimum=0,
maximum=1,
info="Set to 0 to not train the Text Encoder 1",
)
# Initialize the learning rate TE2 number input
self.learning_rate_te2 = gr.Number(
label="Learning rate TE2",
value=self.config.get(
"basic.learning_rate_te2", self.learning_rate_value
),
visible=False,
minimum=0,
maximum=1,
info="Set to 0 to not train the Text Encoder 2",
)
# Initialize the learning rate warmup slider
self.lr_warmup = gr.Slider(
label="LR warmup (% of total steps)",
value=self.config.get("basic.lr_warmup", self.lr_warmup_value),
minimum=0,
maximum=100,
step=1,
)
def lr_scheduler_changed(scheduler, value):
if scheduler == "constant":
self.old_lr_warmup = value
value = 0
interactive=False
info="Can't use LR warmup with LR Scheduler constant... setting to 0 and disabling field..."
else:
if self.old_lr_warmup != 0:
value = self.old_lr_warmup
self.old_lr_warmup = 0
interactive=True
info=""
return gr.Slider(value=value, interactive=interactive, info=info)
self.lr_scheduler.change(
lr_scheduler_changed,
inputs=[self.lr_scheduler, self.lr_warmup],
outputs=self.lr_warmup,
)
def init_scheduler_controls(self) -> None:
"""
Initializes the scheduler controls for the model.
"""
with gr.Row(visible=not self.finetuning):
# Initialize the learning rate scheduler number of cycles textbox
self.lr_scheduler_num_cycles = gr.Number(
label="LR # cycles",
minimum=1,
# precision=0, # round to nearest integer
step=1, # Increment value by 1
info="Number of restarts for cosine scheduler with restarts",
value=self.config.get("basic.lr_scheduler_num_cycles", 1),
)
# Initialize the learning rate scheduler power textbox
self.lr_scheduler_power = gr.Number(
label="LR power",
minimum=0.0,
step=0.01,
info="Polynomial power for polynomial scheduler",
value=self.config.get("basic.lr_scheduler_power", 1.0),
)
def init_resolution_and_bucket_controls(self) -> None:
"""
Initializes the resolution and bucket controls for the model.
"""
with gr.Row(visible=not self.finetuning):
# Initialize the maximum resolution textbox
self.max_resolution = gr.Textbox(
label="Max resolution",
value=self.config.get("basic.max_resolution", "512,512"),
placeholder="512,512",
)
# Initialize the stop text encoder training slider
self.stop_text_encoder_training = gr.Slider(
minimum=-1,
maximum=100,
value=self.config.get("basic.stop_text_encoder_training", 0),
step=1,
label="Stop TE (% of total steps)",
)
# Initialize the enable buckets checkbox
self.enable_bucket = gr.Checkbox(
label="Enable buckets",
value=self.config.get("basic.enable_bucket", True),
)
# Initialize the minimum bucket resolution slider
self.min_bucket_reso = gr.Slider(
label="Minimum bucket resolution",
value=self.config.get("basic.min_bucket_reso", 256),
minimum=64,
maximum=4096,
step=64,
info="Minimum size in pixel a bucket can be (>= 64)",
)
# Initialize the maximum bucket resolution slider
self.max_bucket_reso = gr.Slider(
label="Maximum bucket resolution",
value=self.config.get("basic.max_bucket_reso", 2048),
minimum=64,
maximum=4096,
step=64,
info="Maximum size in pixel a bucket can be (>= 64)",
)
def setup_sdxl_checkbox_behavior(self) -> None:
"""
Sets up the behavior of the SDXL checkbox based on the finetuning and dreambooth flags.
"""
self.sdxl_checkbox.change(
self.update_learning_rate_te,
inputs=[
self.sdxl_checkbox,
gr.Checkbox(value=self.finetuning, visible=False),
gr.Checkbox(value=self.dreambooth, visible=False),
],
outputs=[
self.learning_rate_te,
self.learning_rate_te1,
self.learning_rate_te2,
],
)
def update_learning_rate_te(
self,
sdxl_checkbox: gr.Checkbox,
finetuning: bool,
dreambooth: bool,
) -> Tuple[gr.Number, gr.Number, gr.Number]:
"""
Updates the visibility of the learning rate TE, TE1, and TE2 based on the SDXL checkbox and finetuning/dreambooth flags.
Args:
sdxl_checkbox (gr.Checkbox): The SDXL checkbox.
finetuning (bool): Whether finetuning is enabled.
dreambooth (bool): Whether dreambooth is enabled.
Returns:
Tuple[gr.Number, gr.Number, gr.Number]: A tuple containing the updated visibility for learning rate TE, TE1, and TE2.
"""
# Determine the visibility condition based on finetuning and dreambooth flags
visibility_condition = finetuning or dreambooth
# Return a tuple of gr.Number instances with updated visibility
return (
gr.Number(visible=(not sdxl_checkbox and visibility_condition)),
gr.Number(visible=(sdxl_checkbox and visibility_condition)),
gr.Number(visible=(sdxl_checkbox and visibility_condition)),
)
|