File size: 46,851 Bytes
fb83c5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 |
import gradio as gr
import json
import math
import os
import subprocess
import time
import sys
import toml
from datetime import datetime
from .common_gui import (
check_if_model_exist,
color_aug_changed,
get_executable_path,
get_file_path,
get_saveasfile_path,
print_command_and_toml,
run_cmd_advanced_training,
SaveConfigFile,
scriptdir,
update_my_data,
validate_file_path, validate_folder_path, validate_model_path,
validate_args_setting, setup_environment,
)
from .class_accelerate_launch import AccelerateLaunch
from .class_configuration_file import ConfigurationFile
from .class_source_model import SourceModel
from .class_basic_training import BasicTraining
from .class_advanced_training import AdvancedTraining
from .class_folders import Folders
from .class_sdxl_parameters import SDXLParameters
from .class_command_executor import CommandExecutor
from .class_tensorboard import TensorboardManager
from .class_sample_images import SampleImages, create_prompt_file
from .class_huggingface import HuggingFace
from .class_metadata import MetaData
from .class_gui_config import KohyaSSGUIConfig
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
# Setup command executor
executor = None
# Setup huggingface
huggingface = None
use_shell = False
train_state_value = time.time()
folder_symbol = "\U0001f4c2" # 📂
refresh_symbol = "\U0001f504" # 🔄
save_style_symbol = "\U0001f4be" # 💾
document_symbol = "\U0001F4C4" # 📄
PYTHON = sys.executable
presets_dir = rf"{scriptdir}/presets"
def save_configuration(
save_as_bool,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl_checkbox,
train_dir,
image_folder,
output_dir,
dataset_config,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
masked_loss,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
train_text_encoder,
full_bf16,
create_caption,
create_buckets,
save_model_as,
caption_extension,
# use_8bit_adam,
xformers,
clip_skip,
dynamo_backend,
dynamo_mode,
dynamo_use_fullgraph,
dynamo_use_dynamic,
extra_accelerate_launch_args,
num_processes,
num_machines,
multi_gpu,
gpu_ids,
main_process_port,
save_state,
save_state_on_train_end,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
block_lr,
mem_eff_attn,
shuffle_caption,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
cache_latents_to_disk,
use_latent_files,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
noise_offset_random_strength,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
ip_noise_gamma,
ip_noise_gamma_random_strength,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
loss_type,
huber_schedule,
huber_c,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
log_with,
wandb_api_key,
wandb_run_name,
log_tracker_name,
log_tracker_config,
scale_v_pred_loss_like_noise_pred,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
min_timestep,
max_timestep,
debiased_estimation_loss,
huggingface_repo_id,
huggingface_token,
huggingface_repo_type,
huggingface_repo_visibility,
huggingface_path_in_repo,
save_state_to_huggingface,
resume_from_huggingface,
async_upload,
metadata_author,
metadata_description,
metadata_license,
metadata_tags,
metadata_title,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
if save_as_bool:
log.info("Save as...")
file_path = get_saveasfile_path(file_path)
else:
log.info("Save...")
if file_path == None or file_path == "":
file_path = get_saveasfile_path(file_path)
# log.info(file_path)
if file_path == None or file_path == "":
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
# Extract the destination directory from the file path
destination_directory = os.path.dirname(file_path)
# Create the destination directory if it doesn't exist
if not os.path.exists(destination_directory):
os.makedirs(destination_directory)
SaveConfigFile(
parameters=parameters,
file_path=file_path,
exclusion=["file_path", "save_as"],
)
return file_path
def open_configuration(
ask_for_file,
apply_preset,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl_checkbox,
train_dir,
image_folder,
output_dir,
dataset_config,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
masked_loss,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
train_text_encoder,
full_bf16,
create_caption,
create_buckets,
save_model_as,
caption_extension,
# use_8bit_adam,
xformers,
clip_skip,
dynamo_backend,
dynamo_mode,
dynamo_use_fullgraph,
dynamo_use_dynamic,
extra_accelerate_launch_args,
num_processes,
num_machines,
multi_gpu,
gpu_ids,
main_process_port,
save_state,
save_state_on_train_end,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
block_lr,
mem_eff_attn,
shuffle_caption,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list,
cache_latents,
cache_latents_to_disk,
use_latent_files,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
noise_offset_random_strength,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
ip_noise_gamma,
ip_noise_gamma_random_strength,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
loss_type,
huber_schedule,
huber_c,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
log_with,
wandb_api_key,
wandb_run_name,
log_tracker_name,
log_tracker_config,
scale_v_pred_loss_like_noise_pred,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
min_timestep,
max_timestep,
debiased_estimation_loss,
huggingface_repo_id,
huggingface_token,
huggingface_repo_type,
huggingface_repo_visibility,
huggingface_path_in_repo,
save_state_to_huggingface,
resume_from_huggingface,
async_upload,
metadata_author,
metadata_description,
metadata_license,
metadata_tags,
metadata_title,
training_preset,
):
# Get list of function parameters and values
parameters = list(locals().items())
# Check if we are "applying" a preset or a config
if apply_preset:
log.info(f"Applying preset {training_preset}...")
file_path = rf"{presets_dir}/finetune/{training_preset}.json"
else:
# If not applying a preset, set the `training_preset` field to an empty string
# Find the index of the `training_preset` parameter using the `index()` method
training_preset_index = parameters.index(("training_preset", training_preset))
# Update the value of `training_preset` by directly assigning an empty string value
parameters[training_preset_index] = ("training_preset", "")
original_file_path = file_path
if ask_for_file:
file_path = get_file_path(file_path)
if not file_path == "" and not file_path == None:
# load variables from JSON file
with open(file_path, "r", encoding="utf-8") as f:
my_data = json.load(f)
log.info("Loading config...")
# Update values to fix deprecated use_8bit_adam checkbox and set appropriate optimizer if it is set to True
my_data = update_my_data(my_data)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
values = [file_path]
for key, value in parameters:
json_value = my_data.get(key)
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ["ask_for_file", "apply_preset", "file_path"]:
values.append(json_value if json_value is not None else value)
return tuple(values)
def train_model(
headless,
print_only,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl_checkbox,
train_dir,
image_folder,
output_dir,
dataset_config,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
flip_aug,
masked_loss,
caption_metadata_filename,
latent_metadata_filename,
full_path,
learning_rate,
lr_scheduler,
lr_warmup,
dataset_repeats,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
train_text_encoder,
full_bf16,
generate_caption_database,
generate_image_buckets,
save_model_as,
caption_extension,
# use_8bit_adam,
xformers,
clip_skip,
dynamo_backend,
dynamo_mode,
dynamo_use_fullgraph,
dynamo_use_dynamic,
extra_accelerate_launch_args,
num_processes,
num_machines,
multi_gpu,
gpu_ids,
main_process_port,
save_state,
save_state_on_train_end,
resume,
gradient_checkpointing,
gradient_accumulation_steps,
block_lr,
mem_eff_attn,
shuffle_caption,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
full_fp16,
color_aug,
model_list, # Keep this. Yes, it is unused here but required given the common list used
cache_latents,
cache_latents_to_disk,
use_latent_files,
keep_tokens,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
noise_offset_random_strength,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
ip_noise_gamma,
ip_noise_gamma_random_strength,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
loss_type,
huber_schedule,
huber_c,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
log_with,
wandb_api_key,
wandb_run_name,
log_tracker_name,
log_tracker_config,
scale_v_pred_loss_like_noise_pred,
sdxl_cache_text_encoder_outputs,
sdxl_no_half_vae,
min_timestep,
max_timestep,
debiased_estimation_loss,
huggingface_repo_id,
huggingface_token,
huggingface_repo_type,
huggingface_repo_visibility,
huggingface_path_in_repo,
save_state_to_huggingface,
resume_from_huggingface,
async_upload,
metadata_author,
metadata_description,
metadata_license,
metadata_tags,
metadata_title,
):
# Get list of function parameters and values
parameters = list(locals().items())
global train_state_value
TRAIN_BUTTON_VISIBLE = [
gr.Button(visible=True),
gr.Button(visible=False or headless),
gr.Textbox(value=train_state_value),
]
if executor.is_running():
log.error("Training is already running. Can't start another training session.")
return TRAIN_BUTTON_VISIBLE
log.debug(f"headless = {headless} ; print_only = {print_only}")
log.info(f"Start Finetuning...")
log.info(f"Validating lr scheduler arguments...")
if not validate_args_setting(lr_scheduler_args):
return
log.info(f"Validating optimizer arguments...")
if not validate_args_setting(optimizer_args):
return
if train_dir != "" and not os.path.exists(train_dir):
os.mkdir(train_dir)
#
# Validate paths
#
if not validate_file_path(dataset_config):
return TRAIN_BUTTON_VISIBLE
if not validate_folder_path(image_folder):
return TRAIN_BUTTON_VISIBLE
if not validate_file_path(log_tracker_config):
return TRAIN_BUTTON_VISIBLE
if not validate_folder_path(logging_dir, can_be_written_to=True, create_if_not_exists=True):
return TRAIN_BUTTON_VISIBLE
if not validate_folder_path(output_dir, can_be_written_to=True, create_if_not_exists=True):
return TRAIN_BUTTON_VISIBLE
if not validate_model_path(pretrained_model_name_or_path):
return TRAIN_BUTTON_VISIBLE
if not validate_file_path(resume):
return TRAIN_BUTTON_VISIBLE
#
# End of path validation
#
# if not validate_paths(
# dataset_config=dataset_config,
# finetune_image_folder=image_folder,
# headless=headless,
# log_tracker_config=log_tracker_config,
# logging_dir=logging_dir,
# output_dir=output_dir,
# pretrained_model_name_or_path=pretrained_model_name_or_path,
# resume=resume,
# ):
# return TRAIN_BUTTON_VISIBLE
if not print_only and check_if_model_exist(
output_name, output_dir, save_model_as, headless
):
return TRAIN_BUTTON_VISIBLE
if dataset_config:
log.info(
"Dataset config toml file used, skipping caption json file, image buckets, total_steps, train_batch_size, gradient_accumulation_steps, epoch, reg_factor, max_train_steps creation..."
)
if max_train_steps == 0:
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required."
else:
max_train_steps_info = f"Max train steps: {max_train_steps}"
else:
# create caption json file
if generate_caption_database:
# Define the command components
run_cmd = [
PYTHON,
rf"{scriptdir}/sd-scripts/finetune/merge_captions_to_metadata.py",
]
# Add the caption extension
run_cmd.append("--caption_extension")
if caption_extension == "":
run_cmd.append(".caption") # Default extension
else:
run_cmd.append(caption_extension)
# Add paths for the image folder and the caption metadata file
run_cmd.append(image_folder)
run_cmd.append(os.path.join(train_dir, caption_metadata_filename))
# Include the full path flag if specified
if full_path:
run_cmd.append("--full_path")
# Log the built command
log.info(" ".join(run_cmd))
# Prepare environment variables
env = setup_environment()
# create images buckets
if generate_image_buckets:
# Build the command to run the preparation script
run_cmd = [
PYTHON,
rf"{scriptdir}/sd-scripts/finetune/prepare_buckets_latents.py",
image_folder,
os.path.join(train_dir, caption_metadata_filename),
os.path.join(train_dir, latent_metadata_filename),
pretrained_model_name_or_path,
"--batch_size",
str(batch_size),
"--max_resolution",
str(max_resolution),
"--min_bucket_reso",
str(min_bucket_reso),
"--max_bucket_reso",
str(max_bucket_reso),
"--mixed_precision",
str(mixed_precision),
]
# Conditional flags
if full_path:
run_cmd.append("--full_path")
if sdxl_checkbox and sdxl_no_half_vae:
log.info(
"Using mixed_precision = no because no half vae is selected..."
)
# Ensure 'no' is correctly handled without extra quotes that might be interpreted literally in command line
run_cmd.append("--mixed_precision=no")
# Log the complete command as a string for clarity
log.info(" ".join(run_cmd))
# Copy and modify environment variables
env = setup_environment()
# Execute the command if not just for printing
if not print_only:
subprocess.run(run_cmd, env=env)
if image_folder == "":
log.error("Image folder dir is empty")
return TRAIN_BUTTON_VISIBLE
image_num = len(
[
f
for f, lower_f in (
(file, file.lower()) for file in os.listdir(image_folder)
)
if lower_f.endswith((".jpg", ".jpeg", ".png", ".webp"))
]
)
log.info(f"image_num = {image_num}")
repeats = int(image_num) * int(dataset_repeats)
log.info(f"repeats = {str(repeats)}")
if max_train_steps == 0:
# calculate max_train_steps
max_train_steps = int(
math.ceil(
float(repeats)
/ int(train_batch_size)
/ int(gradient_accumulation_steps)
* int(epoch)
)
)
# Divide by two because flip augmentation create two copied of the source images
if flip_aug and max_train_steps:
max_train_steps = int(math.ceil(float(max_train_steps) / 2))
if max_train_steps == 0:
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required."
else:
max_train_steps_info = f"Max train steps: {max_train_steps}"
log.info(max_train_steps_info)
if max_train_steps != 0:
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
else:
lr_warmup_steps = 0
log.info(f"lr_warmup_steps = {lr_warmup_steps}")
accelerate_path = get_executable_path("accelerate")
if accelerate_path == "":
log.error("accelerate not found")
return TRAIN_BUTTON_VISIBLE
run_cmd = [rf'{accelerate_path}', "launch"]
run_cmd = AccelerateLaunch.run_cmd(
run_cmd=run_cmd,
dynamo_backend=dynamo_backend,
dynamo_mode=dynamo_mode,
dynamo_use_fullgraph=dynamo_use_fullgraph,
dynamo_use_dynamic=dynamo_use_dynamic,
num_processes=num_processes,
num_machines=num_machines,
multi_gpu=multi_gpu,
gpu_ids=gpu_ids,
main_process_port=main_process_port,
num_cpu_threads_per_process=num_cpu_threads_per_process,
mixed_precision=mixed_precision,
extra_accelerate_launch_args=extra_accelerate_launch_args,
)
if sdxl_checkbox:
run_cmd.append(rf"{scriptdir}/sd-scripts/sdxl_train.py")
else:
run_cmd.append(rf"{scriptdir}/sd-scripts/fine_tune.py")
in_json = (
f"{train_dir}/{latent_metadata_filename}"
if use_latent_files == "Yes"
else f"{train_dir}/{caption_metadata_filename}"
)
cache_text_encoder_outputs = sdxl_checkbox and sdxl_cache_text_encoder_outputs
no_half_vae = sdxl_checkbox and sdxl_no_half_vae
if max_data_loader_n_workers == "" or None:
max_data_loader_n_workers = 0
else:
max_data_loader_n_workers = int(max_data_loader_n_workers)
if max_train_steps == "" or None:
max_train_steps = 0
else:
max_train_steps = int(max_train_steps)
config_toml_data = {
# Update the values in the TOML data
"adaptive_noise_scale": (
adaptive_noise_scale if adaptive_noise_scale != 0 else None
),
"async_upload": async_upload,
"block_lr": block_lr,
"bucket_no_upscale": bucket_no_upscale,
"bucket_reso_steps": bucket_reso_steps,
"cache_latents": cache_latents,
"cache_latents_to_disk": cache_latents_to_disk,
"cache_text_encoder_outputs": cache_text_encoder_outputs,
"caption_dropout_every_n_epochs": int(caption_dropout_every_n_epochs),
"caption_dropout_rate": caption_dropout_rate,
"caption_extension": caption_extension,
"clip_skip": clip_skip if clip_skip != 0 else None,
"color_aug": color_aug,
"dataset_config": dataset_config,
"dataset_repeats": int(dataset_repeats),
"debiased_estimation_loss": debiased_estimation_loss,
"dynamo_backend": dynamo_backend,
"enable_bucket": True,
"flip_aug": flip_aug,
"full_bf16": full_bf16,
"full_fp16": full_fp16,
"gradient_accumulation_steps": int(gradient_accumulation_steps),
"gradient_checkpointing": gradient_checkpointing,
"huber_c": huber_c,
"huber_schedule": huber_schedule,
"huggingface_repo_id": huggingface_repo_id,
"huggingface_token": huggingface_token,
"huggingface_repo_type": huggingface_repo_type,
"huggingface_repo_visibility": huggingface_repo_visibility,
"huggingface_path_in_repo": huggingface_path_in_repo,
"in_json": in_json,
"ip_noise_gamma": ip_noise_gamma if ip_noise_gamma != 0 else None,
"ip_noise_gamma_random_strength": ip_noise_gamma_random_strength,
"keep_tokens": int(keep_tokens),
"learning_rate": learning_rate, # both for sd1.5 and sdxl
"learning_rate_te": (
learning_rate_te if not sdxl_checkbox else None
), # only for sd1.5
"learning_rate_te1": (
learning_rate_te1 if sdxl_checkbox else None
), # only for sdxl
"learning_rate_te2": (
learning_rate_te2 if sdxl_checkbox else None
), # only for sdxl
"logging_dir": logging_dir,
"log_tracker_name": log_tracker_name,
"log_tracker_config": log_tracker_config,
"loss_type": loss_type,
"lr_scheduler": lr_scheduler,
"lr_scheduler_args": str(lr_scheduler_args).replace('"', "").split(),
"lr_warmup_steps": lr_warmup_steps,
"masked_loss": masked_loss,
"max_bucket_reso": int(max_bucket_reso),
"max_timestep": max_timestep if max_timestep != 0 else None,
"max_token_length": int(max_token_length),
"max_train_epochs": (
int(max_train_epochs) if int(max_train_epochs) != 0 else None
),
"max_train_steps": int(max_train_steps) if int(max_train_steps) != 0 else None,
"mem_eff_attn": mem_eff_attn,
"metadata_author": metadata_author,
"metadata_description": metadata_description,
"metadata_license": metadata_license,
"metadata_tags": metadata_tags,
"metadata_title": metadata_title,
"min_bucket_reso": int(min_bucket_reso),
"min_snr_gamma": min_snr_gamma if min_snr_gamma != 0 else None,
"min_timestep": min_timestep if min_timestep != 0 else None,
"mixed_precision": mixed_precision,
"multires_noise_discount": multires_noise_discount,
"multires_noise_iterations": (
multires_noise_iterations if multires_noise_iterations != 0 else None
),
"no_half_vae": no_half_vae,
"noise_offset": noise_offset if noise_offset != 0 else None,
"noise_offset_random_strength": noise_offset_random_strength,
"noise_offset_type": noise_offset_type,
"optimizer_type": optimizer,
"optimizer_args": str(optimizer_args).replace('"', "").split(),
"output_dir": output_dir,
"output_name": output_name,
"persistent_data_loader_workers": int(persistent_data_loader_workers),
"pretrained_model_name_or_path": pretrained_model_name_or_path,
"random_crop": random_crop,
"resolution": max_resolution,
"resume": resume,
"resume_from_huggingface": resume_from_huggingface,
"sample_every_n_epochs": (
sample_every_n_epochs if sample_every_n_epochs != 0 else None
),
"sample_every_n_steps": (
sample_every_n_steps if sample_every_n_steps != 0 else None
),
"sample_prompts": create_prompt_file(sample_prompts, output_dir),
"sample_sampler": sample_sampler,
"save_every_n_epochs": (
save_every_n_epochs if save_every_n_epochs != 0 else None
),
"save_every_n_steps": save_every_n_steps if save_every_n_steps != 0 else None,
"save_last_n_steps": save_last_n_steps if save_last_n_steps != 0 else None,
"save_last_n_steps_state": (
save_last_n_steps_state if save_last_n_steps_state != 0 else None
),
"save_model_as": save_model_as,
"save_precision": save_precision,
"save_state": save_state,
"save_state_on_train_end": save_state_on_train_end,
"save_state_to_huggingface": save_state_to_huggingface,
"scale_v_pred_loss_like_noise_pred": scale_v_pred_loss_like_noise_pred,
"sdpa": True if xformers == "sdpa" else None,
"seed": int(seed) if int(seed) != 0 else None,
"shuffle_caption": shuffle_caption,
"train_batch_size": train_batch_size,
"train_data_dir": image_folder,
"train_text_encoder": train_text_encoder,
"log_with": log_with,
"v2": v2,
"v_parameterization": v_parameterization,
"v_pred_like_loss": v_pred_like_loss if v_pred_like_loss != 0 else None,
"vae_batch_size": vae_batch_size if vae_batch_size != 0 else None,
"wandb_api_key": wandb_api_key,
"wandb_run_name": wandb_run_name,
"weighted_captions": weighted_captions,
"xformers": True if xformers == "xformers" else None,
}
# Given dictionary `config_toml_data`
# Remove all values = ""
config_toml_data = {
key: value
for key, value in config_toml_data.items()
if value not in ["", False, None]
}
config_toml_data["max_data_loader_n_workers"] = int(max_data_loader_n_workers)
# Sort the dictionary by keys
config_toml_data = dict(sorted(config_toml_data.items()))
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
tmpfilename = fr"{output_dir}/config_finetune-{formatted_datetime}.toml"
# Save the updated TOML data back to the file
with open(tmpfilename, "w", encoding="utf-8") as toml_file:
toml.dump(config_toml_data, toml_file)
if not os.path.exists(toml_file.name):
log.error(f"Failed to write TOML file: {toml_file.name}")
run_cmd.append("--config_file")
run_cmd.append(rf"{tmpfilename}")
# Initialize a dictionary with always-included keyword arguments
kwargs_for_training = {
"additional_parameters": additional_parameters,
}
# Pass the dynamically constructed keyword arguments to the function
run_cmd = run_cmd_advanced_training(run_cmd=run_cmd, **kwargs_for_training)
if print_only:
print_command_and_toml(run_cmd, tmpfilename)
else:
# Saving config file for model
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
# config_dir = os.path.dirname(os.path.dirname(train_data_dir))
file_path = os.path.join(output_dir, f"{output_name}_{formatted_datetime}.json")
log.info(f"Saving training config to {file_path}...")
SaveConfigFile(
parameters=parameters,
file_path=file_path,
exclusion=["file_path", "save_as", "headless", "print_only"],
)
# log.info(run_cmd)
env = setup_environment()
# Run the command
executor.execute_command(run_cmd=run_cmd, env=env)
train_state_value = time.time()
return (
gr.Button(visible=False or headless),
gr.Button(visible=True),
gr.Textbox(value=train_state_value),
)
def finetune_tab(
headless=False,
config: KohyaSSGUIConfig = {},
use_shell_flag: bool = False,
):
dummy_db_true = gr.Checkbox(value=True, visible=False)
dummy_db_false = gr.Checkbox(value=False, visible=False)
dummy_headless = gr.Checkbox(value=headless, visible=False)
global use_shell
use_shell = use_shell_flag
with gr.Tab("Training"), gr.Column(variant="compact"):
gr.Markdown("Train a custom model using kohya finetune python code...")
# Setup Configuration Files Gradio
with gr.Accordion("Configuration", open=False):
configuration = ConfigurationFile(headless=headless, config=config)
with gr.Accordion("Accelerate launch", open=False), gr.Column():
accelerate_launch = AccelerateLaunch(config=config)
with gr.Column():
source_model = SourceModel(
headless=headless, finetuning=True, config=config
)
image_folder = source_model.train_data_dir
output_name = source_model.output_name
with gr.Accordion("Folders", open=False), gr.Group():
folders = Folders(headless=headless, finetune=True, config=config)
output_dir = folders.output_dir
logging_dir = folders.logging_dir
train_dir = folders.reg_data_dir
with gr.Accordion("Metadata", open=False), gr.Group():
metadata = MetaData(config=config)
with gr.Accordion("Dataset Preparation", open=False):
with gr.Row():
max_resolution = gr.Textbox(
label="Resolution (width,height)", value="512,512"
)
min_bucket_reso = gr.Textbox(label="Min bucket resolution", value="256")
max_bucket_reso = gr.Textbox(
label="Max bucket resolution", value="1024"
)
batch_size = gr.Textbox(label="Batch size", value="1")
with gr.Row():
create_caption = gr.Checkbox(
label="Generate caption metadata", value=True
)
create_buckets = gr.Checkbox(
label="Generate image buckets metadata", value=True
)
use_latent_files = gr.Dropdown(
label="Use latent files",
choices=[
"No",
"Yes",
],
value="Yes",
)
with gr.Accordion("Advanced parameters", open=False):
with gr.Row():
caption_metadata_filename = gr.Textbox(
label="Caption metadata filename",
value="meta_cap.json",
)
latent_metadata_filename = gr.Textbox(
label="Latent metadata filename", value="meta_lat.json"
)
with gr.Row():
full_path = gr.Checkbox(label="Use full path", value=True)
weighted_captions = gr.Checkbox(
label="Weighted captions", value=False
)
with gr.Accordion("Parameters", open=False), gr.Column():
def list_presets(path):
json_files = []
for file in os.listdir(path):
if file.endswith(".json"):
json_files.append(os.path.splitext(file)[0])
user_presets_path = os.path.join(path, "user_presets")
if os.path.isdir(user_presets_path):
for file in os.listdir(user_presets_path):
if file.endswith(".json"):
preset_name = os.path.splitext(file)[0]
json_files.append(os.path.join("user_presets", preset_name))
return json_files
training_preset = gr.Dropdown(
label="Presets",
choices=["none"] + list_presets(f"{presets_dir}/finetune"),
# elem_id="myDropdown",
value="none",
)
with gr.Accordion("Basic", open="True"):
with gr.Group(elem_id="basic_tab"):
basic_training = BasicTraining(
learning_rate_value=1e-5,
finetuning=True,
sdxl_checkbox=source_model.sdxl_checkbox,
config=config,
)
# Add SDXL Parameters
sdxl_params = SDXLParameters(
source_model.sdxl_checkbox, config=config
)
with gr.Row():
dataset_repeats = gr.Textbox(label="Dataset repeats", value=40)
train_text_encoder = gr.Checkbox(
label="Train text encoder", value=True
)
with gr.Accordion("Advanced", open=False, elem_id="advanced_tab"):
with gr.Row():
gradient_accumulation_steps = gr.Slider(
label="Gradient accumulate steps",
info="Number of updates steps to accumulate before performing a backward/update pass",
value=config.get("advanced.gradient_accumulation_steps", 1),
minimum=1,
maximum=120,
step=1,
)
block_lr = gr.Textbox(
label="Block LR (SDXL)",
placeholder="(Optional)",
info="Specify the different learning rates for each U-Net block. Specify 23 values separated by commas like 1e-3,1e-3 ... 1e-3",
)
advanced_training = AdvancedTraining(
headless=headless, finetuning=True, config=config
)
advanced_training.color_aug.change(
color_aug_changed,
inputs=[advanced_training.color_aug],
outputs=[
basic_training.cache_latents
], # Not applicable to fine_tune.py
)
with gr.Accordion("Samples", open=False, elem_id="samples_tab"):
sample = SampleImages(config=config)
global huggingface
with gr.Accordion("HuggingFace", open=False):
huggingface = HuggingFace(config=config)
global executor
executor = CommandExecutor(headless=headless)
with gr.Column(), gr.Group():
with gr.Row():
button_print = gr.Button("Print training command")
TensorboardManager(headless=headless, logging_dir=folders.logging_dir)
settings_list = [
source_model.pretrained_model_name_or_path,
source_model.v2,
source_model.v_parameterization,
source_model.sdxl_checkbox,
train_dir,
image_folder,
output_dir,
source_model.dataset_config,
logging_dir,
max_resolution,
min_bucket_reso,
max_bucket_reso,
batch_size,
advanced_training.flip_aug,
advanced_training.masked_loss,
caption_metadata_filename,
latent_metadata_filename,
full_path,
basic_training.learning_rate,
basic_training.lr_scheduler,
basic_training.lr_warmup,
dataset_repeats,
basic_training.train_batch_size,
basic_training.epoch,
basic_training.save_every_n_epochs,
accelerate_launch.mixed_precision,
source_model.save_precision,
basic_training.seed,
accelerate_launch.num_cpu_threads_per_process,
basic_training.learning_rate_te,
basic_training.learning_rate_te1,
basic_training.learning_rate_te2,
train_text_encoder,
advanced_training.full_bf16,
create_caption,
create_buckets,
source_model.save_model_as,
basic_training.caption_extension,
advanced_training.xformers,
advanced_training.clip_skip,
accelerate_launch.dynamo_backend,
accelerate_launch.dynamo_mode,
accelerate_launch.dynamo_use_fullgraph,
accelerate_launch.dynamo_use_dynamic,
accelerate_launch.extra_accelerate_launch_args,
accelerate_launch.num_processes,
accelerate_launch.num_machines,
accelerate_launch.multi_gpu,
accelerate_launch.gpu_ids,
accelerate_launch.main_process_port,
advanced_training.save_state,
advanced_training.save_state_on_train_end,
advanced_training.resume,
advanced_training.gradient_checkpointing,
gradient_accumulation_steps,
block_lr,
advanced_training.mem_eff_attn,
advanced_training.shuffle_caption,
output_name,
advanced_training.max_token_length,
basic_training.max_train_epochs,
basic_training.max_train_steps,
advanced_training.max_data_loader_n_workers,
advanced_training.full_fp16,
advanced_training.color_aug,
source_model.model_list,
basic_training.cache_latents,
basic_training.cache_latents_to_disk,
use_latent_files,
advanced_training.keep_tokens,
advanced_training.persistent_data_loader_workers,
advanced_training.bucket_no_upscale,
advanced_training.random_crop,
advanced_training.bucket_reso_steps,
advanced_training.v_pred_like_loss,
advanced_training.caption_dropout_every_n_epochs,
advanced_training.caption_dropout_rate,
basic_training.optimizer,
basic_training.optimizer_args,
basic_training.lr_scheduler_args,
advanced_training.noise_offset_type,
advanced_training.noise_offset,
advanced_training.noise_offset_random_strength,
advanced_training.adaptive_noise_scale,
advanced_training.multires_noise_iterations,
advanced_training.multires_noise_discount,
advanced_training.ip_noise_gamma,
advanced_training.ip_noise_gamma_random_strength,
sample.sample_every_n_steps,
sample.sample_every_n_epochs,
sample.sample_sampler,
sample.sample_prompts,
advanced_training.additional_parameters,
advanced_training.loss_type,
advanced_training.huber_schedule,
advanced_training.huber_c,
advanced_training.vae_batch_size,
advanced_training.min_snr_gamma,
weighted_captions,
advanced_training.save_every_n_steps,
advanced_training.save_last_n_steps,
advanced_training.save_last_n_steps_state,
advanced_training.log_with,
advanced_training.wandb_api_key,
advanced_training.wandb_run_name,
advanced_training.log_tracker_name,
advanced_training.log_tracker_config,
advanced_training.scale_v_pred_loss_like_noise_pred,
sdxl_params.sdxl_cache_text_encoder_outputs,
sdxl_params.sdxl_no_half_vae,
advanced_training.min_timestep,
advanced_training.max_timestep,
advanced_training.debiased_estimation_loss,
huggingface.huggingface_repo_id,
huggingface.huggingface_token,
huggingface.huggingface_repo_type,
huggingface.huggingface_repo_visibility,
huggingface.huggingface_path_in_repo,
huggingface.save_state_to_huggingface,
huggingface.resume_from_huggingface,
huggingface.async_upload,
metadata.metadata_author,
metadata.metadata_description,
metadata.metadata_license,
metadata.metadata_tags,
metadata.metadata_title,
]
configuration.button_open_config.click(
open_configuration,
inputs=[dummy_db_true, dummy_db_false, configuration.config_file_name]
+ settings_list
+ [training_preset],
outputs=[configuration.config_file_name]
+ settings_list
+ [training_preset],
show_progress=False,
)
# config.button_open_config.click(
# open_configuration,
# inputs=[dummy_db_true, dummy_db_false, config.config_file_name] + settings_list,
# outputs=[config.config_file_name] + settings_list,
# show_progress=False,
# )
configuration.button_load_config.click(
open_configuration,
inputs=[dummy_db_false, dummy_db_false, configuration.config_file_name]
+ settings_list
+ [training_preset],
outputs=[configuration.config_file_name]
+ settings_list
+ [training_preset],
show_progress=False,
)
training_preset.input(
open_configuration,
inputs=[dummy_db_false, dummy_db_true, configuration.config_file_name]
+ settings_list
+ [training_preset],
outputs=[gr.Textbox(visible=False)] + settings_list + [training_preset],
show_progress=False,
)
run_state = gr.Textbox(value=train_state_value, visible=False)
run_state.change(
fn=executor.wait_for_training_to_end,
outputs=[executor.button_run, executor.button_stop_training],
)
executor.button_run.click(
train_model,
inputs=[dummy_headless] + [dummy_db_false] + settings_list,
outputs=[executor.button_run, executor.button_stop_training, run_state],
show_progress=False,
)
executor.button_stop_training.click(
executor.kill_command,
outputs=[executor.button_run, executor.button_stop_training],
)
button_print.click(
train_model,
inputs=[dummy_headless] + [dummy_db_true] + settings_list,
show_progress=False,
)
configuration.button_save_config.click(
save_configuration,
inputs=[dummy_db_false, configuration.config_file_name] + settings_list,
outputs=[configuration.config_file_name],
show_progress=False,
)
# config.button_save_as_config.click(
# save_configuration,
# inputs=[dummy_db_true, config.config_file_name] + settings_list,
# outputs=[config.config_file_name],
# show_progress=False,
# )
with gr.Tab("Guides"):
gr.Markdown("This section provide Various Finetuning guides and information...")
top_level_path = rf'"{scriptdir}/docs/Finetuning/top_level.md"'
if os.path.exists(top_level_path):
with open(os.path.join(top_level_path), "r", encoding="utf-8") as file:
guides_top_level = file.read() + "\n"
gr.Markdown(guides_top_level)
|