File size: 5,557 Bytes
fb83c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
import subprocess
import os
import sys
from .common_gui import get_folder_path, add_pre_postfix, scriptdir, list_dirs, setup_environment

from .custom_logging import setup_logging

# Set up logging
log = setup_logging()

PYTHON = sys.executable


def caption_images(

    train_data_dir,

    caption_ext,

    batch_size,

    max_data_loader_n_workers,

    max_length,

    model_id,

    prefix,

    postfix,

):
    # Check for images_dir_input
    if train_data_dir == "":
        log.info("Image folder is missing...")
        return

    if caption_ext == "":
        log.info("Please provide an extension for the caption files.")
        return

    log.info(f"GIT captioning files in {train_data_dir}...")

    run_cmd = [fr"{PYTHON}", fr"{scriptdir}/sd-scripts/finetune/make_captions_by_git.py"]

    # Add --model_id if provided
    if model_id != "":
        run_cmd.append("--model_id")
        run_cmd.append(fr'{model_id}')

    # Add other arguments with their values
    run_cmd.append("--batch_size")
    run_cmd.append(str(batch_size))

    run_cmd.append("--max_data_loader_n_workers")
    run_cmd.append(str(max_data_loader_n_workers))

    run_cmd.append("--max_length")
    run_cmd.append(str(max_length))

    # Add --caption_extension if provided
    if caption_ext != "":
        run_cmd.append("--caption_extension")
        run_cmd.append(caption_ext)

    # Add the directory containing the training data
    run_cmd.append(fr"{train_data_dir}")

    env = setup_environment()

    # Reconstruct the safe command string for display
    command_to_run = " ".join(run_cmd)
    log.info(f"Executing command: {command_to_run}")
            
    # Run the command in the sd-scripts folder context
    subprocess.run(run_cmd, env=env)


    # Add prefix and postfix
    add_pre_postfix(
        folder=train_data_dir,
        caption_file_ext=caption_ext,
        prefix=prefix,
        postfix=postfix,
    )

    log.info("...captioning done")


###
# Gradio UI
###


def gradio_git_caption_gui_tab(

    headless=False, default_train_dir=None,

):
    from .common_gui import create_refresh_button

    default_train_dir = (
        default_train_dir
        if default_train_dir is not None
        else os.path.join(scriptdir, "data")
    )
    current_train_dir = default_train_dir

    def list_train_dirs(path):
        nonlocal current_train_dir
        current_train_dir = path
        return list(list_dirs(path))

    with gr.Tab("GIT Captioning"):
        gr.Markdown(
            "This utility will use GIT to caption files for each images in a folder."
        )
        with gr.Group(), gr.Row():
            train_data_dir = gr.Dropdown(
                label="Image folder to caption (containing the images to caption)",
                choices=[""] + list_train_dirs(default_train_dir),
                value="",
                interactive=True,
                allow_custom_value=True,
            )
            create_refresh_button(
                train_data_dir,
                lambda: None,
                lambda: {"choices": list_train_dirs(current_train_dir)},
                "open_folder_small",
            )
            button_train_data_dir_input = gr.Button(
                "📂",
                elem_id="open_folder_small",
                elem_classes=["tool"],
                visible=(not headless),
            )
            button_train_data_dir_input.click(
                get_folder_path,
                outputs=train_data_dir,
                show_progress=False,
            )
        with gr.Row():
            caption_ext = gr.Dropdown(
                label="Caption file extension",
                choices=[".cap", ".caption", ".txt"],
                value=".txt",
                interactive=True,
                allow_custom_value=True,
            )

            prefix = gr.Textbox(
                label="Prefix to add to GIT caption",
                placeholder="(Optional)",
                interactive=True,
            )

            postfix = gr.Textbox(
                label="Postfix to add to GIT caption",
                placeholder="(Optional)",
                interactive=True,
            )

            batch_size = gr.Number(value=1, label="Batch size", interactive=True)

        with gr.Row():
            max_data_loader_n_workers = gr.Number(
                value=2, label="Number of workers", interactive=True
            )
            max_length = gr.Number(value=75, label="Max length", interactive=True)
            model_id = gr.Textbox(
                label="Model",
                placeholder="(Optional) model id for GIT in Hugging Face",
                interactive=True,
            )

        caption_button = gr.Button("Caption images")

        caption_button.click(
            caption_images,
            inputs=[
                train_data_dir,
                caption_ext,
                batch_size,
                max_data_loader_n_workers,
                max_length,
                model_id,
                prefix,
                postfix,
            ],
            show_progress=False,
        )

        train_data_dir.change(
            fn=lambda path: gr.Dropdown(choices=[""] + list_train_dirs(path)),
            inputs=train_data_dir,
            outputs=train_data_dir,
            show_progress=False,
        )