File size: 16,913 Bytes
fb83c5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# Standard library imports
import os
import subprocess
import sys
import json
# Third-party imports
import gradio as gr
# Local module imports
from .common_gui import (
get_saveasfilename_path,
get_file_path,
scriptdir,
list_files,
create_refresh_button, setup_environment
)
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
folder_symbol = "\U0001f4c2" # π
refresh_symbol = "\U0001f504" # π
save_style_symbol = "\U0001f4be" # πΎ
document_symbol = "\U0001F4C4" # π
PYTHON = sys.executable
def check_model(model):
if not model:
return True
if not os.path.isfile(model):
log.info(f"The provided {model} is not a file")
return False
return True
def verify_conditions(sd_model, lora_models):
lora_models_count = sum(1 for model in lora_models if model)
if sd_model and lora_models_count >= 1:
return True
elif not sd_model and lora_models_count >= 2:
return True
return False
class GradioMergeLoRaTab:
def __init__(self, headless=False):
self.headless = headless
self.build_tab()
def save_inputs_to_json(self, file_path, inputs):
with open(file_path, "w", encoding="utf-8") as file:
json.dump(inputs, file)
log.info(f"Saved inputs to {file_path}")
def load_inputs_from_json(self, file_path):
with open(file_path, "r", encoding="utf-8") as file:
inputs = json.load(file)
log.info(f"Loaded inputs from {file_path}")
return inputs
def build_tab(self):
current_sd_model_dir = os.path.join(scriptdir, "outputs")
current_save_dir = os.path.join(scriptdir, "outputs")
current_a_model_dir = current_sd_model_dir
current_b_model_dir = current_sd_model_dir
current_c_model_dir = current_sd_model_dir
current_d_model_dir = current_sd_model_dir
def list_sd_models(path):
nonlocal current_sd_model_dir
current_sd_model_dir = path
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
def list_a_models(path):
nonlocal current_a_model_dir
current_a_model_dir = path
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
def list_b_models(path):
nonlocal current_b_model_dir
current_b_model_dir = path
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
def list_c_models(path):
nonlocal current_c_model_dir
current_c_model_dir = path
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
def list_d_models(path):
nonlocal current_d_model_dir
current_d_model_dir = path
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
def list_save_to(path):
nonlocal current_save_dir
current_save_dir = path
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
with gr.Tab("Merge LoRA"):
gr.Markdown(
"This utility can merge up to 4 LoRA together or alternatively merge up to 4 LoRA into a SD checkpoint."
)
lora_ext = gr.Textbox(value="*.safetensors *.pt", visible=False)
lora_ext_name = gr.Textbox(value="LoRA model types", visible=False)
ckpt_ext = gr.Textbox(value="*.safetensors *.ckpt", visible=False)
ckpt_ext_name = gr.Textbox(value="SD model types", visible=False)
with gr.Group(), gr.Row():
sd_model = gr.Dropdown(
label="SD Model (Optional. Stable Diffusion model path, if you want to merge it with LoRA files)",
interactive=True,
choices=[""] + list_sd_models(current_sd_model_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
sd_model,
lambda: None,
lambda: {"choices": list_sd_models(current_sd_model_dir)},
"open_folder_small",
)
sd_model_file = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not self.headless),
)
sd_model_file.click(
get_file_path,
inputs=[sd_model, ckpt_ext, ckpt_ext_name],
outputs=sd_model,
show_progress=False,
)
sdxl_model = gr.Checkbox(label="SDXL model", value=False)
sd_model.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_sd_models(path)),
inputs=sd_model,
outputs=sd_model,
show_progress=False,
)
with gr.Group(), gr.Row():
lora_a_model = gr.Dropdown(
label='LoRA model "A" (path to the LoRA A model)',
interactive=True,
choices=[""] + list_a_models(current_a_model_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
lora_a_model,
lambda: None,
lambda: {"choices": list_a_models(current_a_model_dir)},
"open_folder_small",
)
button_lora_a_model_file = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not self.headless),
)
button_lora_a_model_file.click(
get_file_path,
inputs=[lora_a_model, lora_ext, lora_ext_name],
outputs=lora_a_model,
show_progress=False,
)
lora_b_model = gr.Dropdown(
label='LoRA model "B" (path to the LoRA B model)',
interactive=True,
choices=[""] + list_b_models(current_b_model_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
lora_b_model,
lambda: None,
lambda: {"choices": list_b_models(current_b_model_dir)},
"open_folder_small",
)
button_lora_b_model_file = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not self.headless),
)
button_lora_b_model_file.click(
get_file_path,
inputs=[lora_b_model, lora_ext, lora_ext_name],
outputs=lora_b_model,
show_progress=False,
)
lora_a_model.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_a_models(path)),
inputs=lora_a_model,
outputs=lora_a_model,
show_progress=False,
)
lora_b_model.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_b_models(path)),
inputs=lora_b_model,
outputs=lora_b_model,
show_progress=False,
)
with gr.Row():
ratio_a = gr.Slider(
label="Model A merge ratio (eg: 0.5 mean 50%)",
minimum=0,
maximum=1,
step=0.01,
value=0.0,
interactive=True,
)
ratio_b = gr.Slider(
label="Model B merge ratio (eg: 0.5 mean 50%)",
minimum=0,
maximum=1,
step=0.01,
value=0.0,
interactive=True,
)
with gr.Group(), gr.Row():
lora_c_model = gr.Dropdown(
label='LoRA model "C" (path to the LoRA C model)',
interactive=True,
choices=[""] + list_c_models(current_c_model_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
lora_c_model,
lambda: None,
lambda: {"choices": list_c_models(current_c_model_dir)},
"open_folder_small",
)
button_lora_c_model_file = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not self.headless),
)
button_lora_c_model_file.click(
get_file_path,
inputs=[lora_c_model, lora_ext, lora_ext_name],
outputs=lora_c_model,
show_progress=False,
)
lora_d_model = gr.Dropdown(
label='LoRA model "D" (path to the LoRA D model)',
interactive=True,
choices=[""] + list_d_models(current_d_model_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
lora_d_model,
lambda: None,
lambda: {"choices": list_d_models(current_d_model_dir)},
"open_folder_small",
)
button_lora_d_model_file = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not self.headless),
)
button_lora_d_model_file.click(
get_file_path,
inputs=[lora_d_model, lora_ext, lora_ext_name],
outputs=lora_d_model,
show_progress=False,
)
lora_c_model.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_c_models(path)),
inputs=lora_c_model,
outputs=lora_c_model,
show_progress=False,
)
lora_d_model.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_d_models(path)),
inputs=lora_d_model,
outputs=lora_d_model,
show_progress=False,
)
with gr.Row():
ratio_c = gr.Slider(
label="Model C merge ratio (eg: 0.5 mean 50%)",
minimum=0,
maximum=1,
step=0.01,
value=0.0,
interactive=True,
)
ratio_d = gr.Slider(
label="Model D merge ratio (eg: 0.5 mean 50%)",
minimum=0,
maximum=1,
step=0.01,
value=0.0,
interactive=True,
)
with gr.Group(), gr.Row():
save_to = gr.Dropdown(
label="Save to (path for the file to save...)",
interactive=True,
choices=[""] + list_save_to(current_d_model_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
save_to,
lambda: None,
lambda: {"choices": list_save_to(current_save_dir)},
"open_folder_small",
)
button_save_to = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not self.headless),
)
button_save_to.click(
get_saveasfilename_path,
inputs=[save_to, lora_ext, lora_ext_name],
outputs=save_to,
show_progress=False,
)
precision = gr.Radio(
label="Merge precision",
choices=["fp16", "bf16", "float"],
value="float",
interactive=True,
)
save_precision = gr.Radio(
label="Save precision",
choices=["fp16", "bf16", "float"],
value="fp16",
interactive=True,
)
save_to.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_save_to(path)),
inputs=save_to,
outputs=save_to,
show_progress=False,
)
merge_button = gr.Button("Merge model")
merge_button.click(
self.merge_lora,
inputs=[
sd_model,
sdxl_model,
lora_a_model,
lora_b_model,
lora_c_model,
lora_d_model,
ratio_a,
ratio_b,
ratio_c,
ratio_d,
save_to,
precision,
save_precision,
],
show_progress=False,
)
def merge_lora(
self,
sd_model,
sdxl_model,
lora_a_model,
lora_b_model,
lora_c_model,
lora_d_model,
ratio_a,
ratio_b,
ratio_c,
ratio_d,
save_to,
precision,
save_precision,
):
log.info("Merge model...")
models = [
sd_model,
lora_a_model,
lora_b_model,
lora_c_model,
lora_d_model,
]
lora_models = models[1:]
ratios = [ratio_a, ratio_b, ratio_c, ratio_d]
if not verify_conditions(sd_model, lora_models):
log.info(
"Warning: Either provide at least one LoRa model along with the sd_model or at least two LoRa models if no sd_model is provided."
)
return
for model in models:
if not check_model(model):
return
if not sdxl_model:
run_cmd = [rf"{PYTHON}", rf"{scriptdir}/sd-scripts/networks/merge_lora.py"]
else:
run_cmd = [
rf"{PYTHON}",
rf"{scriptdir}/sd-scripts/networks/sdxl_merge_lora.py",
]
if sd_model:
run_cmd.append("--sd_model")
run_cmd.append(rf"{sd_model}")
run_cmd.append("--save_precision")
run_cmd.append(save_precision)
run_cmd.append("--precision")
run_cmd.append(precision)
run_cmd.append("--save_to")
run_cmd.append(rf"{save_to}")
# Prepare model and ratios command as lists, including only non-empty models
valid_models = [model for model in lora_models if model]
valid_ratios = [ratios[i] for i, model in enumerate(lora_models) if model]
if valid_models:
run_cmd.append("--models")
run_cmd.extend(valid_models) # Each model is a separate argument
run_cmd.append("--ratios")
run_cmd.extend(
map(str, valid_ratios)
) # Convert ratios to strings and include them as separate arguments
env = setup_environment()
# Reconstruct the safe command string for display
command_to_run = " ".join(run_cmd)
log.info(f"Executing command: {command_to_run}")
# Run the command in the sd-scripts folder context
subprocess.run(run_cmd, env=env)
log.info("Done merging...")
|