kohya_ss / kohya_gui /class_accelerate_launch.py
zengxi123's picture
Upload folder using huggingface_hub
fb83c5b verified
import gradio as gr
import os
import shlex
from .class_gui_config import KohyaSSGUIConfig
class AccelerateLaunch:
def __init__(
self,
config: KohyaSSGUIConfig = {},
) -> None:
self.config = config
with gr.Accordion("Resource Selection", open=True):
with gr.Row():
self.mixed_precision = gr.Dropdown(
label="Mixed precision",
choices=["no", "fp16", "bf16", "fp8"],
value=self.config.get("accelerate_launch.mixed_precision", "fp16"),
info="Whether or not to use mixed precision training.",
)
self.num_processes = gr.Number(
label="Number of processes",
value=self.config.get("accelerate_launch.num_processes", 1),
# precision=0,
step=1,
minimum=1,
info="The total number of processes to be launched in parallel.",
)
self.num_machines = gr.Number(
label="Number of machines",
value=self.config.get("accelerate_launch.num_machines", 1),
# precision=0,
step=1,
minimum=1,
info="The total number of machines used in this training.",
)
self.num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label="Number of CPU threads per core",
value=self.config.get(
"accelerate_launch.num_cpu_threads_per_process", 2
),
info="The number of CPU threads per process.",
)
with gr.Row():
self.dynamo_backend = gr.Dropdown(
label="Dynamo backend",
choices=[
"no",
"eager",
"aot_eager",
"inductor",
"aot_ts_nvfuser",
"nvprims_nvfuser",
"cudagraphs",
"ofi",
"fx2trt",
"onnxrt",
"tensorrt",
"ipex",
"tvm",
],
value=self.config.get("accelerate_launch.dynamo_backend", "no"),
info="The backend to use for the dynamo JIT compiler.",
)
self.dynamo_mode = gr.Dropdown(
label="Dynamo mode",
choices=[
"default",
"reduce-overhead",
"max-autotune",
],
value=self.config.get("accelerate_launch.dynamo_mode", "default"),
info="Choose a mode to optimize your training with dynamo.",
)
self.dynamo_use_fullgraph = gr.Checkbox(
label="Dynamo use fullgraph",
value=self.config.get("accelerate_launch.dynamo_use_fullgraph", False),
info="Whether to use full graph mode for dynamo or it is ok to break model into several subgraphs",
)
self.dynamo_use_dynamic = gr.Checkbox(
label="Dynamo use dynamic",
value=self.config.get("accelerate_launch.dynamo_use_dynamic", False),
info="Whether to enable dynamic shape tracing.",
)
with gr.Accordion("Hardware Selection", open=True):
with gr.Row():
self.multi_gpu = gr.Checkbox(
label="Multi GPU",
value=self.config.get("accelerate_launch.multi_gpu", False),
info="Whether or not this should launch a distributed GPU training.",
)
with gr.Accordion("Distributed GPUs", open=True):
with gr.Row():
self.gpu_ids = gr.Textbox(
label="GPU IDs",
value=self.config.get("accelerate_launch.gpu_ids", ""),
placeholder="example: 0,1",
info=" What GPUs (by id) should be used for training on this machine as a comma-separated list",
)
self.main_process_port = gr.Number(
label="Main process port",
value=self.config.get("accelerate_launch.main_process_port", 0),
# precision=1,
step=1,
minimum=0,
maximum=65535,
info="The port to use to communicate with the machine of rank 0.",
)
with gr.Row():
self.extra_accelerate_launch_args = gr.Textbox(
label="Extra accelerate launch arguments",
value=self.config.get(
"accelerate_launch.extra_accelerate_launch_args", ""
),
placeholder="example: --same_network --machine_rank 4",
info="List of extra parameters to pass to accelerate launch",
)
def run_cmd(run_cmd: list, **kwargs):
if "dynamo_backend" in kwargs and kwargs.get("dynamo_backend"):
run_cmd.append("--dynamo_backend")
run_cmd.append(kwargs["dynamo_backend"])
if "dynamo_mode" in kwargs and kwargs.get("dynamo_mode"):
run_cmd.append("--dynamo_mode")
run_cmd.append(kwargs["dynamo_mode"])
if "dynamo_use_fullgraph" in kwargs and kwargs.get("dynamo_use_fullgraph"):
run_cmd.append("--dynamo_use_fullgraph")
if "dynamo_use_dynamic" in kwargs and kwargs.get("dynamo_use_dynamic"):
run_cmd.append("--dynamo_use_dynamic")
if "extra_accelerate_launch_args" in kwargs and kwargs["extra_accelerate_launch_args"] != "":
extra_accelerate_launch_args = kwargs["extra_accelerate_launch_args"].replace('"', "")
for arg in extra_accelerate_launch_args.split():
run_cmd.append(shlex.quote(arg))
if "gpu_ids" in kwargs and kwargs.get("gpu_ids") != "":
run_cmd.append("--gpu_ids")
run_cmd.append(shlex.quote(kwargs["gpu_ids"]))
if "main_process_port" in kwargs and kwargs.get("main_process_port", 0) > 0:
run_cmd.append("--main_process_port")
run_cmd.append(str(int(kwargs["main_process_port"])))
if "mixed_precision" in kwargs and kwargs.get("mixed_precision"):
run_cmd.append("--mixed_precision")
run_cmd.append(shlex.quote(kwargs["mixed_precision"]))
if "multi_gpu" in kwargs and kwargs.get("multi_gpu"):
run_cmd.append("--multi_gpu")
if "num_processes" in kwargs and int(kwargs.get("num_processes", 0)) > 0:
run_cmd.append("--num_processes")
run_cmd.append(str(int(kwargs["num_processes"])))
if "num_machines" in kwargs and int(kwargs.get("num_machines", 0)) > 0:
run_cmd.append("--num_machines")
run_cmd.append(str(int(kwargs["num_machines"])))
if (
"num_cpu_threads_per_process" in kwargs
and int(kwargs.get("num_cpu_threads_per_process", 0)) > 0
):
run_cmd.append("--num_cpu_threads_per_process")
run_cmd.append(str(int(kwargs["num_cpu_threads_per_process"])))
return run_cmd