|
import gradio as gr
|
|
import subprocess
|
|
import os
|
|
import sys
|
|
from .common_gui import (
|
|
get_saveasfilename_path,
|
|
get_file_path,
|
|
is_file_writable,
|
|
scriptdir,
|
|
list_files,
|
|
create_refresh_button, setup_environment
|
|
)
|
|
|
|
from .custom_logging import setup_logging
|
|
|
|
|
|
log = setup_logging()
|
|
|
|
folder_symbol = "\U0001f4c2"
|
|
refresh_symbol = "\U0001f504"
|
|
save_style_symbol = "\U0001f4be"
|
|
document_symbol = "\U0001F4C4"
|
|
|
|
PYTHON = sys.executable
|
|
|
|
|
|
def extract_lora(
|
|
model_tuned,
|
|
model_org,
|
|
save_to,
|
|
save_precision,
|
|
dim,
|
|
v2,
|
|
sdxl,
|
|
conv_dim,
|
|
clamp_quantile,
|
|
min_diff,
|
|
device,
|
|
load_original_model_to,
|
|
load_tuned_model_to,
|
|
load_precision,
|
|
):
|
|
|
|
if model_tuned == "":
|
|
log.info("Invalid finetuned model file")
|
|
return
|
|
|
|
if model_org == "":
|
|
log.info("Invalid base model file")
|
|
return
|
|
|
|
|
|
if not os.path.isfile(model_tuned):
|
|
log.info("The provided finetuned model is not a file")
|
|
return
|
|
|
|
if not os.path.isfile(model_org):
|
|
log.info("The provided base model is not a file")
|
|
return
|
|
|
|
if os.path.dirname(save_to) == "":
|
|
|
|
save_to = os.path.join(os.path.dirname(model_tuned), save_to)
|
|
if os.path.isdir(save_to):
|
|
|
|
save_to = os.path.join(save_to, "lora.safetensors")
|
|
if os.path.normpath(model_tuned) == os.path.normpath(save_to):
|
|
|
|
path, ext = os.path.splitext(save_to)
|
|
save_to = f"{path}_tmp{ext}"
|
|
|
|
if not is_file_writable(save_to):
|
|
return
|
|
|
|
run_cmd = [
|
|
rf"{PYTHON}",
|
|
rf"{scriptdir}/sd-scripts/networks/extract_lora_from_models.py",
|
|
"--load_precision",
|
|
load_precision,
|
|
"--save_precision",
|
|
save_precision,
|
|
"--save_to",
|
|
rf"{save_to}",
|
|
"--model_org",
|
|
rf"{model_org}",
|
|
"--model_tuned",
|
|
rf"{model_tuned}",
|
|
"--dim",
|
|
str(dim),
|
|
"--device",
|
|
device,
|
|
"--clamp_quantile",
|
|
str(clamp_quantile),
|
|
"--min_diff",
|
|
str(min_diff),
|
|
]
|
|
|
|
if conv_dim > 0:
|
|
run_cmd.append("--conv_dim")
|
|
run_cmd.append(str(conv_dim))
|
|
|
|
if v2:
|
|
run_cmd.append("--v2")
|
|
|
|
if sdxl:
|
|
run_cmd.append("--sdxl")
|
|
run_cmd.append("--load_original_model_to")
|
|
run_cmd.append(load_original_model_to)
|
|
run_cmd.append("--load_tuned_model_to")
|
|
run_cmd.append(load_tuned_model_to)
|
|
|
|
env = setup_environment()
|
|
|
|
|
|
command_to_run = " ".join(run_cmd)
|
|
log.info(f"Executing command: {command_to_run}")
|
|
|
|
|
|
subprocess.run(run_cmd, env=env)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gradio_extract_lora_tab(
|
|
headless=False,
|
|
):
|
|
current_model_dir = os.path.join(scriptdir, "outputs")
|
|
current_model_org_dir = os.path.join(scriptdir, "outputs")
|
|
current_save_dir = os.path.join(scriptdir, "outputs")
|
|
|
|
def list_models(path):
|
|
nonlocal current_model_dir
|
|
current_model_dir = path
|
|
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
|
|
|
|
def list_org_models(path):
|
|
nonlocal current_model_org_dir
|
|
current_model_org_dir = path
|
|
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
|
|
|
|
def list_save_to(path):
|
|
nonlocal current_save_dir
|
|
current_save_dir = path
|
|
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
|
|
|
|
def change_sdxl(sdxl):
|
|
return gr.Dropdown(visible=sdxl), gr.Dropdown(visible=sdxl)
|
|
|
|
with gr.Tab("Extract LoRA"):
|
|
gr.Markdown("This utility can extract a LoRA network from a finetuned model.")
|
|
lora_ext = gr.Textbox(value="*.safetensors *.pt", visible=False)
|
|
lora_ext_name = gr.Textbox(value="LoRA model types", visible=False)
|
|
model_ext = gr.Textbox(value="*.ckpt *.safetensors", visible=False)
|
|
model_ext_name = gr.Textbox(value="Model types", visible=False)
|
|
|
|
with gr.Group(), gr.Row():
|
|
model_tuned = gr.Dropdown(
|
|
label="Finetuned model (path to the finetuned model to extract)",
|
|
interactive=True,
|
|
choices=[""] + list_models(current_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
model_tuned,
|
|
lambda: None,
|
|
lambda: {"choices": list_models(current_model_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_model_tuned_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
button_model_tuned_file.click(
|
|
get_file_path,
|
|
inputs=[model_tuned, model_ext, model_ext_name],
|
|
outputs=model_tuned,
|
|
show_progress=False,
|
|
)
|
|
load_tuned_model_to = gr.Radio(
|
|
label="Load finetuned model to",
|
|
choices=["cpu", "cuda", "cuda:0"],
|
|
value="cpu",
|
|
interactive=True,
|
|
scale=1,
|
|
info="only for SDXL",
|
|
visible=False,
|
|
)
|
|
model_org = gr.Dropdown(
|
|
label="Stable Diffusion base model (original model: ckpt or safetensors file)",
|
|
interactive=True,
|
|
choices=[""] + list_org_models(current_model_org_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
model_org,
|
|
lambda: None,
|
|
lambda: {"choices": list_org_models(current_model_org_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_model_org_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
button_model_org_file.click(
|
|
get_file_path,
|
|
inputs=[model_org, model_ext, model_ext_name],
|
|
outputs=model_org,
|
|
show_progress=False,
|
|
)
|
|
load_original_model_to = gr.Dropdown(
|
|
label="Load Stable Diffusion base model to",
|
|
choices=["cpu", "cuda", "cuda:0"],
|
|
value="cpu",
|
|
interactive=True,
|
|
scale=1,
|
|
info="only for SDXL",
|
|
visible=False,
|
|
)
|
|
with gr.Group(), gr.Row():
|
|
save_to = gr.Dropdown(
|
|
label="Save to (path where to save the extracted LoRA model...)",
|
|
interactive=True,
|
|
choices=[""] + list_save_to(current_save_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
scale=2,
|
|
)
|
|
create_refresh_button(
|
|
save_to,
|
|
lambda: None,
|
|
lambda: {"choices": list_save_to(current_save_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_save_to = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
button_save_to.click(
|
|
get_saveasfilename_path,
|
|
inputs=[save_to, lora_ext, lora_ext_name],
|
|
outputs=save_to,
|
|
show_progress=False,
|
|
)
|
|
save_precision = gr.Radio(
|
|
label="Save precision",
|
|
choices=["fp16", "bf16", "float"],
|
|
value="fp16",
|
|
interactive=True,
|
|
scale=1,
|
|
)
|
|
load_precision = gr.Radio(
|
|
label="Load precision",
|
|
choices=["fp16", "bf16", "float"],
|
|
value="fp16",
|
|
interactive=True,
|
|
scale=1,
|
|
)
|
|
|
|
model_tuned.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_models(path)),
|
|
inputs=model_tuned,
|
|
outputs=model_tuned,
|
|
show_progress=False,
|
|
)
|
|
model_org.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_org_models(path)),
|
|
inputs=model_org,
|
|
outputs=model_org,
|
|
show_progress=False,
|
|
)
|
|
save_to.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_save_to(path)),
|
|
inputs=save_to,
|
|
outputs=save_to,
|
|
show_progress=False,
|
|
)
|
|
with gr.Row():
|
|
dim = gr.Slider(
|
|
minimum=4,
|
|
maximum=1024,
|
|
label="Network Dimension (Rank)",
|
|
value=128,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
conv_dim = gr.Slider(
|
|
minimum=0,
|
|
maximum=1024,
|
|
label="Conv Dimension (Rank)",
|
|
value=128,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
clamp_quantile = gr.Number(
|
|
label="Clamp Quantile",
|
|
value=0.99,
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.001,
|
|
interactive=True,
|
|
)
|
|
min_diff = gr.Number(
|
|
label="Minimum difference",
|
|
value=0.01,
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.001,
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
v2 = gr.Checkbox(label="v2", value=False, interactive=True)
|
|
sdxl = gr.Checkbox(label="SDXL", value=False, interactive=True)
|
|
device = gr.Radio(
|
|
label="Device",
|
|
choices=[
|
|
"cpu",
|
|
"cuda",
|
|
],
|
|
value="cuda",
|
|
interactive=True,
|
|
)
|
|
|
|
sdxl.change(
|
|
change_sdxl,
|
|
inputs=sdxl,
|
|
outputs=[load_tuned_model_to, load_original_model_to],
|
|
)
|
|
|
|
extract_button = gr.Button("Extract LoRA model")
|
|
|
|
extract_button.click(
|
|
extract_lora,
|
|
inputs=[
|
|
model_tuned,
|
|
model_org,
|
|
save_to,
|
|
save_precision,
|
|
dim,
|
|
v2,
|
|
sdxl,
|
|
conv_dim,
|
|
clamp_quantile,
|
|
min_diff,
|
|
device,
|
|
load_original_model_to,
|
|
load_tuned_model_to,
|
|
load_precision,
|
|
],
|
|
show_progress=False,
|
|
)
|
|
|