|
import gradio as gr
|
|
import json
|
|
import math
|
|
import os
|
|
import toml
|
|
import time
|
|
from datetime import datetime
|
|
from .common_gui import (
|
|
check_if_model_exist,
|
|
color_aug_changed,
|
|
create_refresh_button,
|
|
get_executable_path,
|
|
get_file_path,
|
|
get_saveasfile_path,
|
|
list_files,
|
|
output_message,
|
|
print_command_and_toml,
|
|
run_cmd_advanced_training,
|
|
SaveConfigFile,
|
|
scriptdir,
|
|
update_my_data,
|
|
validate_file_path, validate_folder_path, validate_model_path,
|
|
validate_args_setting, setup_environment,
|
|
)
|
|
from .class_accelerate_launch import AccelerateLaunch
|
|
from .class_configuration_file import ConfigurationFile
|
|
from .class_source_model import SourceModel
|
|
from .class_basic_training import BasicTraining
|
|
from .class_advanced_training import AdvancedTraining
|
|
from .class_folders import Folders
|
|
from .class_sdxl_parameters import SDXLParameters
|
|
from .class_command_executor import CommandExecutor
|
|
from .class_huggingface import HuggingFace
|
|
from .class_metadata import MetaData
|
|
from .class_tensorboard import TensorboardManager
|
|
from .dreambooth_folder_creation_gui import (
|
|
gradio_dreambooth_folder_creation_tab,
|
|
)
|
|
from .dataset_balancing_gui import gradio_dataset_balancing_tab
|
|
from .class_sample_images import SampleImages, create_prompt_file
|
|
from .class_gui_config import KohyaSSGUIConfig
|
|
|
|
from .custom_logging import setup_logging
|
|
|
|
|
|
log = setup_logging()
|
|
|
|
|
|
executor = None
|
|
|
|
|
|
huggingface = None
|
|
use_shell = False
|
|
train_state_value = time.time()
|
|
|
|
|
|
def save_configuration(
|
|
save_as_bool,
|
|
file_path,
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
sdxl,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
dataset_config,
|
|
max_resolution,
|
|
learning_rate,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latents,
|
|
cache_latents_to_disk,
|
|
caption_extension,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
full_fp16,
|
|
no_token_padding,
|
|
stop_text_encoder_training,
|
|
min_bucket_reso,
|
|
max_bucket_reso,
|
|
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
save_state_on_train_end,
|
|
resume,
|
|
prior_loss_weight,
|
|
color_aug,
|
|
flip_aug,
|
|
clip_skip,
|
|
num_processes,
|
|
num_machines,
|
|
multi_gpu,
|
|
gpu_ids,
|
|
main_process_port,
|
|
vae,
|
|
dynamo_backend,
|
|
dynamo_mode,
|
|
dynamo_use_fullgraph,
|
|
dynamo_use_dynamic,
|
|
extra_accelerate_launch_args,
|
|
output_name,
|
|
max_token_length,
|
|
max_train_epochs,
|
|
max_data_loader_n_workers,
|
|
mem_eff_attn,
|
|
gradient_accumulation_steps,
|
|
model_list,
|
|
token_string,
|
|
init_word,
|
|
num_vectors_per_token,
|
|
max_train_steps,
|
|
weights,
|
|
template,
|
|
keep_tokens,
|
|
lr_scheduler_num_cycles,
|
|
lr_scheduler_power,
|
|
persistent_data_loader_workers,
|
|
bucket_no_upscale,
|
|
random_crop,
|
|
bucket_reso_steps,
|
|
v_pred_like_loss,
|
|
caption_dropout_every_n_epochs,
|
|
caption_dropout_rate,
|
|
optimizer,
|
|
optimizer_args,
|
|
lr_scheduler_args,
|
|
noise_offset_type,
|
|
noise_offset,
|
|
noise_offset_random_strength,
|
|
adaptive_noise_scale,
|
|
multires_noise_iterations,
|
|
multires_noise_discount,
|
|
ip_noise_gamma,
|
|
ip_noise_gamma_random_strength,
|
|
sample_every_n_steps,
|
|
sample_every_n_epochs,
|
|
sample_sampler,
|
|
sample_prompts,
|
|
additional_parameters,
|
|
loss_type,
|
|
huber_schedule,
|
|
huber_c,
|
|
vae_batch_size,
|
|
min_snr_gamma,
|
|
save_every_n_steps,
|
|
save_last_n_steps,
|
|
save_last_n_steps_state,
|
|
log_with,
|
|
wandb_api_key,
|
|
wandb_run_name,
|
|
log_tracker_name,
|
|
log_tracker_config,
|
|
scale_v_pred_loss_like_noise_pred,
|
|
min_timestep,
|
|
max_timestep,
|
|
sdxl_no_half_vae,
|
|
huggingface_repo_id,
|
|
huggingface_token,
|
|
huggingface_repo_type,
|
|
huggingface_repo_visibility,
|
|
huggingface_path_in_repo,
|
|
save_state_to_huggingface,
|
|
resume_from_huggingface,
|
|
async_upload,
|
|
metadata_author,
|
|
metadata_description,
|
|
metadata_license,
|
|
metadata_tags,
|
|
metadata_title,
|
|
):
|
|
|
|
parameters = list(locals().items())
|
|
|
|
original_file_path = file_path
|
|
|
|
if save_as_bool:
|
|
log.info("Save as...")
|
|
file_path = get_saveasfile_path(file_path)
|
|
else:
|
|
log.info("Save...")
|
|
if file_path == None or file_path == "":
|
|
file_path = get_saveasfile_path(file_path)
|
|
|
|
|
|
|
|
if file_path == None or file_path == "":
|
|
return original_file_path
|
|
|
|
|
|
destination_directory = os.path.dirname(file_path)
|
|
|
|
|
|
if not os.path.exists(destination_directory):
|
|
os.makedirs(destination_directory)
|
|
|
|
SaveConfigFile(
|
|
parameters=parameters,
|
|
file_path=file_path,
|
|
exclusion=["file_path", "save_as"],
|
|
)
|
|
|
|
return file_path
|
|
|
|
|
|
def open_configuration(
|
|
ask_for_file,
|
|
file_path,
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
sdxl,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
dataset_config,
|
|
max_resolution,
|
|
learning_rate,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latents,
|
|
cache_latents_to_disk,
|
|
caption_extension,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
full_fp16,
|
|
no_token_padding,
|
|
stop_text_encoder_training,
|
|
min_bucket_reso,
|
|
max_bucket_reso,
|
|
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
save_state_on_train_end,
|
|
resume,
|
|
prior_loss_weight,
|
|
color_aug,
|
|
flip_aug,
|
|
clip_skip,
|
|
num_processes,
|
|
num_machines,
|
|
multi_gpu,
|
|
gpu_ids,
|
|
main_process_port,
|
|
vae,
|
|
dynamo_backend,
|
|
dynamo_mode,
|
|
dynamo_use_fullgraph,
|
|
dynamo_use_dynamic,
|
|
extra_accelerate_launch_args,
|
|
output_name,
|
|
max_token_length,
|
|
max_train_epochs,
|
|
max_data_loader_n_workers,
|
|
mem_eff_attn,
|
|
gradient_accumulation_steps,
|
|
model_list,
|
|
token_string,
|
|
init_word,
|
|
num_vectors_per_token,
|
|
max_train_steps,
|
|
weights,
|
|
template,
|
|
keep_tokens,
|
|
lr_scheduler_num_cycles,
|
|
lr_scheduler_power,
|
|
persistent_data_loader_workers,
|
|
bucket_no_upscale,
|
|
random_crop,
|
|
bucket_reso_steps,
|
|
v_pred_like_loss,
|
|
caption_dropout_every_n_epochs,
|
|
caption_dropout_rate,
|
|
optimizer,
|
|
optimizer_args,
|
|
lr_scheduler_args,
|
|
noise_offset_type,
|
|
noise_offset,
|
|
noise_offset_random_strength,
|
|
adaptive_noise_scale,
|
|
multires_noise_iterations,
|
|
multires_noise_discount,
|
|
ip_noise_gamma,
|
|
ip_noise_gamma_random_strength,
|
|
sample_every_n_steps,
|
|
sample_every_n_epochs,
|
|
sample_sampler,
|
|
sample_prompts,
|
|
additional_parameters,
|
|
loss_type,
|
|
huber_schedule,
|
|
huber_c,
|
|
vae_batch_size,
|
|
min_snr_gamma,
|
|
save_every_n_steps,
|
|
save_last_n_steps,
|
|
save_last_n_steps_state,
|
|
log_with,
|
|
wandb_api_key,
|
|
wandb_run_name,
|
|
log_tracker_name,
|
|
log_tracker_config,
|
|
scale_v_pred_loss_like_noise_pred,
|
|
min_timestep,
|
|
max_timestep,
|
|
sdxl_no_half_vae,
|
|
huggingface_repo_id,
|
|
huggingface_token,
|
|
huggingface_repo_type,
|
|
huggingface_repo_visibility,
|
|
huggingface_path_in_repo,
|
|
save_state_to_huggingface,
|
|
resume_from_huggingface,
|
|
async_upload,
|
|
metadata_author,
|
|
metadata_description,
|
|
metadata_license,
|
|
metadata_tags,
|
|
metadata_title,
|
|
):
|
|
|
|
parameters = list(locals().items())
|
|
|
|
original_file_path = file_path
|
|
|
|
if ask_for_file:
|
|
file_path = get_file_path(file_path)
|
|
|
|
if not file_path == "" and not file_path == None:
|
|
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
my_data = json.load(f)
|
|
log.info("Loading config...")
|
|
|
|
my_data = update_my_data(my_data)
|
|
else:
|
|
file_path = original_file_path
|
|
my_data = {}
|
|
|
|
values = [file_path]
|
|
for key, value in parameters:
|
|
|
|
if not key in ["ask_for_file", "file_path"]:
|
|
values.append(my_data.get(key, value))
|
|
return tuple(values)
|
|
|
|
|
|
def train_model(
|
|
headless,
|
|
print_only,
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
sdxl,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
dataset_config,
|
|
max_resolution,
|
|
learning_rate,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latents,
|
|
cache_latents_to_disk,
|
|
caption_extension,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
full_fp16,
|
|
no_token_padding,
|
|
stop_text_encoder_training_pct,
|
|
min_bucket_reso,
|
|
max_bucket_reso,
|
|
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
save_state_on_train_end,
|
|
resume,
|
|
prior_loss_weight,
|
|
color_aug,
|
|
flip_aug,
|
|
clip_skip,
|
|
num_processes,
|
|
num_machines,
|
|
multi_gpu,
|
|
gpu_ids,
|
|
main_process_port,
|
|
vae,
|
|
dynamo_backend,
|
|
dynamo_mode,
|
|
dynamo_use_fullgraph,
|
|
dynamo_use_dynamic,
|
|
extra_accelerate_launch_args,
|
|
output_name,
|
|
max_token_length,
|
|
max_train_epochs,
|
|
max_data_loader_n_workers,
|
|
mem_eff_attn,
|
|
gradient_accumulation_steps,
|
|
model_list,
|
|
token_string,
|
|
init_word,
|
|
num_vectors_per_token,
|
|
max_train_steps,
|
|
weights,
|
|
template,
|
|
keep_tokens,
|
|
lr_scheduler_num_cycles,
|
|
lr_scheduler_power,
|
|
persistent_data_loader_workers,
|
|
bucket_no_upscale,
|
|
random_crop,
|
|
bucket_reso_steps,
|
|
v_pred_like_loss,
|
|
caption_dropout_every_n_epochs,
|
|
caption_dropout_rate,
|
|
optimizer,
|
|
optimizer_args,
|
|
lr_scheduler_args,
|
|
noise_offset_type,
|
|
noise_offset,
|
|
noise_offset_random_strength,
|
|
adaptive_noise_scale,
|
|
multires_noise_iterations,
|
|
multires_noise_discount,
|
|
ip_noise_gamma,
|
|
ip_noise_gamma_random_strength,
|
|
sample_every_n_steps,
|
|
sample_every_n_epochs,
|
|
sample_sampler,
|
|
sample_prompts,
|
|
additional_parameters,
|
|
loss_type,
|
|
huber_schedule,
|
|
huber_c,
|
|
vae_batch_size,
|
|
min_snr_gamma,
|
|
save_every_n_steps,
|
|
save_last_n_steps,
|
|
save_last_n_steps_state,
|
|
log_with,
|
|
wandb_api_key,
|
|
wandb_run_name,
|
|
log_tracker_name,
|
|
log_tracker_config,
|
|
scale_v_pred_loss_like_noise_pred,
|
|
min_timestep,
|
|
max_timestep,
|
|
sdxl_no_half_vae,
|
|
huggingface_repo_id,
|
|
huggingface_token,
|
|
huggingface_repo_type,
|
|
huggingface_repo_visibility,
|
|
huggingface_path_in_repo,
|
|
save_state_to_huggingface,
|
|
resume_from_huggingface,
|
|
async_upload,
|
|
metadata_author,
|
|
metadata_description,
|
|
metadata_license,
|
|
metadata_tags,
|
|
metadata_title,
|
|
):
|
|
|
|
parameters = list(locals().items())
|
|
global train_state_value
|
|
|
|
TRAIN_BUTTON_VISIBLE = [
|
|
gr.Button(visible=True),
|
|
gr.Button(visible=False or headless),
|
|
gr.Textbox(value=train_state_value),
|
|
]
|
|
|
|
if executor.is_running():
|
|
log.error("Training is already running. Can't start another training session.")
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
log.info(f"Start training TI...")
|
|
|
|
log.info(f"Validating lr scheduler arguments...")
|
|
if not validate_args_setting(lr_scheduler_args):
|
|
return
|
|
|
|
log.info(f"Validating optimizer arguments...")
|
|
if not validate_args_setting(optimizer_args):
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
if not validate_file_path(dataset_config):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_file_path(log_tracker_config):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(logging_dir, can_be_written_to=True, create_if_not_exists=True):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(output_dir, can_be_written_to=True, create_if_not_exists=True):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_model_path(pretrained_model_name_or_path):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(reg_data_dir):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_file_path(resume):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(train_data_dir):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_model_path(vae):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if token_string == "":
|
|
output_message(msg="Token string is missing", headless=headless)
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if init_word == "":
|
|
output_message(msg="Init word is missing", headless=headless)
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not print_only and check_if_model_exist(
|
|
output_name, output_dir, save_model_as, headless
|
|
):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if dataset_config:
|
|
log.info(
|
|
"Dataset config toml file used, skipping total_steps, train_batch_size, gradient_accumulation_steps, epoch, reg_factor, max_train_steps calculations..."
|
|
)
|
|
if max_train_steps > 0:
|
|
|
|
if stop_text_encoder_training_pct == 0:
|
|
stop_text_encoder_training = 0
|
|
else:
|
|
stop_text_encoder_training = math.ceil(
|
|
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
|
|
)
|
|
|
|
if lr_warmup != 0:
|
|
lr_warmup_steps = round(
|
|
float(int(lr_warmup) * int(max_train_steps) / 100)
|
|
)
|
|
else:
|
|
lr_warmup_steps = 0
|
|
else:
|
|
stop_text_encoder_training = 0
|
|
lr_warmup_steps = 0
|
|
|
|
if max_train_steps == 0:
|
|
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required."
|
|
else:
|
|
max_train_steps_info = f"Max train steps: {max_train_steps}"
|
|
|
|
else:
|
|
if train_data_dir == "":
|
|
log.error("Train data dir is empty")
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
|
|
subfolders = [
|
|
f
|
|
for f in os.listdir(train_data_dir)
|
|
if os.path.isdir(os.path.join(train_data_dir, f))
|
|
]
|
|
|
|
total_steps = 0
|
|
|
|
|
|
for folder in subfolders:
|
|
try:
|
|
|
|
repeats = int(folder.split("_")[0])
|
|
log.info(f"Folder {folder}: {repeats} repeats found")
|
|
|
|
|
|
num_images = len(
|
|
[
|
|
f
|
|
for f, lower_f in (
|
|
(file, file.lower())
|
|
for file in os.listdir(os.path.join(train_data_dir, folder))
|
|
)
|
|
if lower_f.endswith((".jpg", ".jpeg", ".png", ".webp"))
|
|
]
|
|
)
|
|
|
|
log.info(f"Folder {folder}: {num_images} images found")
|
|
|
|
|
|
steps = repeats * num_images
|
|
|
|
|
|
log.info(f"Folder {folder}: {num_images} * {repeats} = {steps} steps")
|
|
|
|
total_steps += steps
|
|
|
|
except ValueError:
|
|
|
|
log.info(
|
|
f"Error: '{folder}' does not contain an underscore, skipping..."
|
|
)
|
|
|
|
if reg_data_dir == "":
|
|
reg_factor = 1
|
|
else:
|
|
log.warning(
|
|
"Regularisation images are used... Will double the number of steps required..."
|
|
)
|
|
reg_factor = 2
|
|
|
|
log.info(f"Regulatization factor: {reg_factor}")
|
|
|
|
if max_train_steps == 0:
|
|
|
|
max_train_steps = int(
|
|
math.ceil(
|
|
float(total_steps)
|
|
/ int(train_batch_size)
|
|
/ int(gradient_accumulation_steps)
|
|
* int(epoch)
|
|
* int(reg_factor)
|
|
)
|
|
)
|
|
max_train_steps_info = f"max_train_steps ({total_steps} / {train_batch_size} / {gradient_accumulation_steps} * {epoch} * {reg_factor}) = {max_train_steps}"
|
|
else:
|
|
if max_train_steps == 0:
|
|
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required."
|
|
else:
|
|
max_train_steps_info = f"Max train steps: {max_train_steps}"
|
|
|
|
|
|
if stop_text_encoder_training_pct == 0:
|
|
stop_text_encoder_training = 0
|
|
else:
|
|
stop_text_encoder_training = math.ceil(
|
|
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
|
|
)
|
|
|
|
if lr_warmup != 0:
|
|
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
|
|
else:
|
|
lr_warmup_steps = 0
|
|
|
|
log.info(f"Total steps: {total_steps}")
|
|
|
|
log.info(f"Train batch size: {train_batch_size}")
|
|
log.info(f"Gradient accumulation steps: {gradient_accumulation_steps}")
|
|
log.info(f"Epoch: {epoch}")
|
|
log.info(max_train_steps_info)
|
|
log.info(f"stop_text_encoder_training = {stop_text_encoder_training}")
|
|
log.info(f"lr_warmup_steps = {lr_warmup_steps}")
|
|
|
|
accelerate_path = get_executable_path("accelerate")
|
|
if accelerate_path == "":
|
|
log.error("accelerate not found")
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
run_cmd = [rf'{accelerate_path}', "launch"]
|
|
|
|
run_cmd = AccelerateLaunch.run_cmd(
|
|
run_cmd=run_cmd,
|
|
dynamo_backend=dynamo_backend,
|
|
dynamo_mode=dynamo_mode,
|
|
dynamo_use_fullgraph=dynamo_use_fullgraph,
|
|
dynamo_use_dynamic=dynamo_use_dynamic,
|
|
num_processes=num_processes,
|
|
num_machines=num_machines,
|
|
multi_gpu=multi_gpu,
|
|
gpu_ids=gpu_ids,
|
|
main_process_port=main_process_port,
|
|
num_cpu_threads_per_process=num_cpu_threads_per_process,
|
|
mixed_precision=mixed_precision,
|
|
extra_accelerate_launch_args=extra_accelerate_launch_args,
|
|
)
|
|
|
|
if sdxl:
|
|
run_cmd.append(rf"{scriptdir}/sd-scripts/sdxl_train_textual_inversion.py")
|
|
else:
|
|
run_cmd.append(rf"{scriptdir}/sd-scripts/train_textual_inversion.py")
|
|
|
|
if max_data_loader_n_workers == "" or None:
|
|
max_data_loader_n_workers = 0
|
|
else:
|
|
max_data_loader_n_workers = int(max_data_loader_n_workers)
|
|
|
|
if max_train_steps == "" or None:
|
|
max_train_steps = 0
|
|
else:
|
|
max_train_steps = int(max_train_steps)
|
|
|
|
|
|
config_toml_data = {
|
|
|
|
"adaptive_noise_scale": (
|
|
adaptive_noise_scale if adaptive_noise_scale != 0 else None
|
|
),
|
|
"async_upload": async_upload,
|
|
"bucket_no_upscale": bucket_no_upscale,
|
|
"bucket_reso_steps": bucket_reso_steps,
|
|
"cache_latents": cache_latents,
|
|
"cache_latents_to_disk": cache_latents_to_disk,
|
|
"caption_dropout_every_n_epochs": int(caption_dropout_every_n_epochs),
|
|
"caption_extension": caption_extension,
|
|
"clip_skip": clip_skip if clip_skip != 0 else None,
|
|
"color_aug": color_aug,
|
|
"dataset_config": dataset_config,
|
|
"dynamo_backend": dynamo_backend,
|
|
"enable_bucket": enable_bucket,
|
|
"epoch": int(epoch),
|
|
"flip_aug": flip_aug,
|
|
"full_fp16": full_fp16,
|
|
"gradient_accumulation_steps": int(gradient_accumulation_steps),
|
|
"gradient_checkpointing": gradient_checkpointing,
|
|
"huber_c": huber_c,
|
|
"huber_schedule": huber_schedule,
|
|
"huggingface_repo_id": huggingface_repo_id,
|
|
"huggingface_token": huggingface_token,
|
|
"huggingface_repo_type": huggingface_repo_type,
|
|
"huggingface_repo_visibility": huggingface_repo_visibility,
|
|
"huggingface_path_in_repo": huggingface_path_in_repo,
|
|
"init_word": init_word,
|
|
"ip_noise_gamma": ip_noise_gamma if ip_noise_gamma != 0 else None,
|
|
"ip_noise_gamma_random_strength": ip_noise_gamma_random_strength,
|
|
"keep_tokens": int(keep_tokens),
|
|
"learning_rate": learning_rate,
|
|
"logging_dir": logging_dir,
|
|
"log_tracker_name": log_tracker_name,
|
|
"log_tracker_config": log_tracker_config,
|
|
"loss_type": loss_type,
|
|
"lr_scheduler": lr_scheduler,
|
|
"lr_scheduler_args": str(lr_scheduler_args).replace('"', "").split(),
|
|
"lr_scheduler_num_cycles": (
|
|
int(lr_scheduler_num_cycles) if lr_scheduler_num_cycles != "" else int(epoch)
|
|
),
|
|
"lr_scheduler_power": lr_scheduler_power,
|
|
"lr_warmup_steps": lr_warmup_steps,
|
|
"max_bucket_reso": max_bucket_reso,
|
|
"max_timestep": max_timestep if max_timestep != 0 else None,
|
|
"max_token_length": int(max_token_length),
|
|
"max_train_epochs": int(max_train_epochs) if int(max_train_epochs) != 0 else None,
|
|
"max_train_steps": int(max_train_steps) if int(max_train_steps) != 0 else None,
|
|
"mem_eff_attn": mem_eff_attn,
|
|
"metadata_author": metadata_author,
|
|
"metadata_description": metadata_description,
|
|
"metadata_license": metadata_license,
|
|
"metadata_tags": metadata_tags,
|
|
"metadata_title": metadata_title,
|
|
"min_bucket_reso": int(min_bucket_reso),
|
|
"min_snr_gamma": min_snr_gamma if min_snr_gamma != 0 else None,
|
|
"min_timestep": min_timestep if min_timestep != 0 else None,
|
|
"mixed_precision": mixed_precision,
|
|
"multires_noise_discount": multires_noise_discount,
|
|
"multires_noise_iterations": (
|
|
multires_noise_iterations if multires_noise_iterations != 0 else None
|
|
),
|
|
"no_half_vae": sdxl_no_half_vae,
|
|
"no_token_padding": no_token_padding,
|
|
"noise_offset": noise_offset if noise_offset != 0 else None,
|
|
"noise_offset_random_strength": noise_offset_random_strength,
|
|
"noise_offset_type": noise_offset_type,
|
|
"num_vectors_per_token": int(num_vectors_per_token),
|
|
"optimizer_type": optimizer,
|
|
"optimizer_args": str(optimizer_args).replace('"', "").split(),
|
|
"output_dir": output_dir,
|
|
"output_name": output_name,
|
|
"persistent_data_loader_workers": int(persistent_data_loader_workers),
|
|
"pretrained_model_name_or_path": pretrained_model_name_or_path,
|
|
"prior_loss_weight": prior_loss_weight,
|
|
"random_crop": random_crop,
|
|
"reg_data_dir": reg_data_dir,
|
|
"resolution": max_resolution,
|
|
"resume": resume,
|
|
"resume_from_huggingface": resume_from_huggingface,
|
|
"sample_every_n_epochs": (
|
|
sample_every_n_epochs if sample_every_n_epochs != 0 else None
|
|
),
|
|
"sample_every_n_steps": (
|
|
sample_every_n_steps if sample_every_n_steps != 0 else None
|
|
),
|
|
"sample_prompts": create_prompt_file(sample_prompts, output_dir),
|
|
"sample_sampler": sample_sampler,
|
|
"save_every_n_epochs": (
|
|
save_every_n_epochs if save_every_n_epochs != 0 else None
|
|
),
|
|
"save_every_n_steps": save_every_n_steps if save_every_n_steps != 0 else None,
|
|
"save_last_n_steps": save_last_n_steps if save_last_n_steps != 0 else None,
|
|
"save_last_n_steps_state": (
|
|
save_last_n_steps_state if save_last_n_steps_state != 0 else None
|
|
),
|
|
"save_model_as": save_model_as,
|
|
"save_precision": save_precision,
|
|
"save_state": save_state,
|
|
"save_state_on_train_end": save_state_on_train_end,
|
|
"save_state_to_huggingface": save_state_to_huggingface,
|
|
"scale_v_pred_loss_like_noise_pred": scale_v_pred_loss_like_noise_pred,
|
|
"sdpa": True if xformers == "sdpa" else None,
|
|
"seed": int(seed) if int(seed) != 0 else None,
|
|
"shuffle_caption": shuffle_caption,
|
|
"stop_text_encoder_training": (
|
|
stop_text_encoder_training if stop_text_encoder_training != 0 else None
|
|
),
|
|
"token_string": token_string,
|
|
"train_batch_size": train_batch_size,
|
|
"train_data_dir": train_data_dir,
|
|
"log_with": log_with,
|
|
"v2": v2,
|
|
"v_parameterization": v_parameterization,
|
|
"v_pred_like_loss": v_pred_like_loss if v_pred_like_loss != 0 else None,
|
|
"vae": vae,
|
|
"vae_batch_size": vae_batch_size if vae_batch_size != 0 else None,
|
|
"wandb_api_key": wandb_api_key,
|
|
"wandb_run_name": wandb_run_name,
|
|
"weigts": weights,
|
|
"use_object_template": True if template == "object template" else None,
|
|
"use_style_template": True if template == "style template" else None,
|
|
"xformers": True if xformers == "xformers" else None,
|
|
}
|
|
|
|
|
|
|
|
config_toml_data = {
|
|
key: value
|
|
for key, value in config_toml_data.items()
|
|
if value not in ["", False, None]
|
|
}
|
|
|
|
config_toml_data["max_data_loader_n_workers"] = int(max_data_loader_n_workers)
|
|
|
|
|
|
config_toml_data = dict(sorted(config_toml_data.items()))
|
|
|
|
current_datetime = datetime.now()
|
|
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
|
|
tmpfilename = fr"{output_dir}/config_textual_inversion-{formatted_datetime}.toml"
|
|
|
|
|
|
with open(tmpfilename, "w", encoding="utf-8") as toml_file:
|
|
toml.dump(config_toml_data, toml_file)
|
|
|
|
if not os.path.exists(toml_file.name):
|
|
log.error(f"Failed to write TOML file: {toml_file.name}")
|
|
|
|
run_cmd.append("--config_file")
|
|
run_cmd.append(rf"{tmpfilename}")
|
|
|
|
|
|
kwargs_for_training = {
|
|
"additional_parameters": additional_parameters,
|
|
}
|
|
|
|
|
|
run_cmd = run_cmd_advanced_training(run_cmd=run_cmd, **kwargs_for_training)
|
|
|
|
if print_only:
|
|
print_command_and_toml(run_cmd, tmpfilename)
|
|
else:
|
|
|
|
current_datetime = datetime.now()
|
|
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
|
|
|
|
file_path = os.path.join(output_dir, f"{output_name}_{formatted_datetime}.json")
|
|
|
|
log.info(f"Saving training config to {file_path}...")
|
|
|
|
SaveConfigFile(
|
|
parameters=parameters,
|
|
file_path=file_path,
|
|
exclusion=["file_path", "save_as", "headless", "print_only"],
|
|
)
|
|
|
|
env = setup_environment()
|
|
|
|
|
|
|
|
executor.execute_command(run_cmd=run_cmd, env=env)
|
|
|
|
train_state_value = time.time()
|
|
|
|
return (
|
|
gr.Button(visible=False or headless),
|
|
gr.Button(visible=True),
|
|
gr.Textbox(value=train_state_value),
|
|
)
|
|
|
|
|
|
def ti_tab(
|
|
headless=False,
|
|
default_output_dir=None,
|
|
config: KohyaSSGUIConfig = {},
|
|
use_shell_flag: bool = False,
|
|
):
|
|
dummy_db_true = gr.Checkbox(value=True, visible=False)
|
|
dummy_db_false = gr.Checkbox(value=False, visible=False)
|
|
dummy_headless = gr.Checkbox(value=headless, visible=False)
|
|
|
|
global use_shell
|
|
use_shell = use_shell_flag
|
|
|
|
current_embedding_dir = (
|
|
default_output_dir
|
|
if default_output_dir is not None and default_output_dir != ""
|
|
else os.path.join(scriptdir, "outputs")
|
|
)
|
|
|
|
with gr.Tab("Training"), gr.Column(variant="compact"):
|
|
gr.Markdown("Train a TI using kohya textual inversion python code...")
|
|
|
|
|
|
with gr.Accordion("Configuration", open=False):
|
|
configuration = ConfigurationFile(headless=headless, config=config)
|
|
|
|
with gr.Accordion("Accelerate launch", open=False), gr.Column():
|
|
accelerate_launch = AccelerateLaunch(config=config)
|
|
|
|
with gr.Column():
|
|
source_model = SourceModel(
|
|
save_model_as_choices=[
|
|
"ckpt",
|
|
"safetensors",
|
|
],
|
|
headless=headless,
|
|
config=config,
|
|
)
|
|
|
|
with gr.Accordion("Folders", open=False), gr.Group():
|
|
folders = Folders(headless=headless, config=config)
|
|
|
|
with gr.Accordion("Metadata", open=False), gr.Group():
|
|
metadata = MetaData(config=config)
|
|
|
|
with gr.Accordion("Dataset Preparation", open=False):
|
|
gr.Markdown(
|
|
"This section provide Dreambooth tools to help setup your dataset..."
|
|
)
|
|
gradio_dreambooth_folder_creation_tab(
|
|
train_data_dir_input=source_model.train_data_dir,
|
|
reg_data_dir_input=folders.reg_data_dir,
|
|
output_dir_input=folders.output_dir,
|
|
logging_dir_input=folders.logging_dir,
|
|
headless=headless,
|
|
config=config,
|
|
)
|
|
|
|
gradio_dataset_balancing_tab(headless=headless)
|
|
|
|
with gr.Accordion("Parameters", open=False), gr.Column():
|
|
with gr.Accordion("Basic", open="True"):
|
|
with gr.Group(elem_id="basic_tab"):
|
|
with gr.Row():
|
|
|
|
def list_embedding_files(path):
|
|
nonlocal current_embedding_dir
|
|
current_embedding_dir = path
|
|
return list(
|
|
list_files(
|
|
path,
|
|
exts=[".pt", ".ckpt", ".safetensors"],
|
|
all=True,
|
|
)
|
|
)
|
|
|
|
weights = gr.Dropdown(
|
|
label="Resume TI training (Optional. Path to existing TI embedding file to keep training)",
|
|
choices=[""] + list_embedding_files(current_embedding_dir),
|
|
value="",
|
|
interactive=True,
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
weights,
|
|
lambda: None,
|
|
lambda: {
|
|
"choices": list_embedding_files(current_embedding_dir)
|
|
},
|
|
"open_folder_small",
|
|
)
|
|
weights_file_input = gr.Button(
|
|
"📂",
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
weights_file_input.click(
|
|
get_file_path,
|
|
outputs=weights,
|
|
show_progress=False,
|
|
)
|
|
weights.change(
|
|
fn=lambda path: gr.Dropdown(
|
|
choices=[""] + list_embedding_files(path)
|
|
),
|
|
inputs=weights,
|
|
outputs=weights,
|
|
show_progress=False,
|
|
)
|
|
|
|
with gr.Row():
|
|
token_string = gr.Textbox(
|
|
label="Token string",
|
|
placeholder="eg: cat",
|
|
)
|
|
init_word = gr.Textbox(
|
|
label="Init word",
|
|
value="*",
|
|
)
|
|
num_vectors_per_token = gr.Slider(
|
|
minimum=1,
|
|
maximum=75,
|
|
value=1,
|
|
step=1,
|
|
label="Vectors",
|
|
)
|
|
|
|
|
|
|
|
|
|
template = gr.Dropdown(
|
|
label="Template",
|
|
choices=[
|
|
"caption",
|
|
"object template",
|
|
"style template",
|
|
],
|
|
value="caption",
|
|
)
|
|
basic_training = BasicTraining(
|
|
learning_rate_value=1e-5,
|
|
lr_scheduler_value="cosine",
|
|
lr_warmup_value=10,
|
|
sdxl_checkbox=source_model.sdxl_checkbox,
|
|
config=config,
|
|
)
|
|
|
|
|
|
sdxl_params = SDXLParameters(
|
|
source_model.sdxl_checkbox,
|
|
show_sdxl_cache_text_encoder_outputs=False,
|
|
config=config,
|
|
)
|
|
|
|
with gr.Accordion("Advanced", open=False, elem_id="advanced_tab"):
|
|
advanced_training = AdvancedTraining(headless=headless, config=config)
|
|
advanced_training.color_aug.change(
|
|
color_aug_changed,
|
|
inputs=[advanced_training.color_aug],
|
|
outputs=[basic_training.cache_latents],
|
|
)
|
|
|
|
with gr.Accordion("Samples", open=False, elem_id="samples_tab"):
|
|
sample = SampleImages(config=config)
|
|
|
|
global huggingface
|
|
with gr.Accordion("HuggingFace", open=False):
|
|
huggingface = HuggingFace(config=config)
|
|
|
|
global executor
|
|
executor = CommandExecutor(headless=headless)
|
|
|
|
with gr.Column(), gr.Group():
|
|
with gr.Row():
|
|
button_print = gr.Button("Print training command")
|
|
|
|
|
|
TensorboardManager(headless=headless, logging_dir=folders.logging_dir)
|
|
|
|
settings_list = [
|
|
source_model.pretrained_model_name_or_path,
|
|
source_model.v2,
|
|
source_model.v_parameterization,
|
|
source_model.sdxl_checkbox,
|
|
folders.logging_dir,
|
|
source_model.train_data_dir,
|
|
folders.reg_data_dir,
|
|
folders.output_dir,
|
|
source_model.dataset_config,
|
|
basic_training.max_resolution,
|
|
basic_training.learning_rate,
|
|
basic_training.lr_scheduler,
|
|
basic_training.lr_warmup,
|
|
basic_training.train_batch_size,
|
|
basic_training.epoch,
|
|
basic_training.save_every_n_epochs,
|
|
accelerate_launch.mixed_precision,
|
|
source_model.save_precision,
|
|
basic_training.seed,
|
|
accelerate_launch.num_cpu_threads_per_process,
|
|
basic_training.cache_latents,
|
|
basic_training.cache_latents_to_disk,
|
|
basic_training.caption_extension,
|
|
basic_training.enable_bucket,
|
|
advanced_training.gradient_checkpointing,
|
|
advanced_training.full_fp16,
|
|
advanced_training.no_token_padding,
|
|
basic_training.stop_text_encoder_training,
|
|
basic_training.min_bucket_reso,
|
|
basic_training.max_bucket_reso,
|
|
advanced_training.xformers,
|
|
source_model.save_model_as,
|
|
advanced_training.shuffle_caption,
|
|
advanced_training.save_state,
|
|
advanced_training.save_state_on_train_end,
|
|
advanced_training.resume,
|
|
advanced_training.prior_loss_weight,
|
|
advanced_training.color_aug,
|
|
advanced_training.flip_aug,
|
|
advanced_training.clip_skip,
|
|
accelerate_launch.num_processes,
|
|
accelerate_launch.num_machines,
|
|
accelerate_launch.multi_gpu,
|
|
accelerate_launch.gpu_ids,
|
|
accelerate_launch.main_process_port,
|
|
advanced_training.vae,
|
|
accelerate_launch.dynamo_backend,
|
|
accelerate_launch.dynamo_mode,
|
|
accelerate_launch.dynamo_use_fullgraph,
|
|
accelerate_launch.dynamo_use_dynamic,
|
|
accelerate_launch.extra_accelerate_launch_args,
|
|
source_model.output_name,
|
|
advanced_training.max_token_length,
|
|
basic_training.max_train_epochs,
|
|
advanced_training.max_data_loader_n_workers,
|
|
advanced_training.mem_eff_attn,
|
|
advanced_training.gradient_accumulation_steps,
|
|
source_model.model_list,
|
|
token_string,
|
|
init_word,
|
|
num_vectors_per_token,
|
|
basic_training.max_train_steps,
|
|
weights,
|
|
template,
|
|
advanced_training.keep_tokens,
|
|
basic_training.lr_scheduler_num_cycles,
|
|
basic_training.lr_scheduler_power,
|
|
advanced_training.persistent_data_loader_workers,
|
|
advanced_training.bucket_no_upscale,
|
|
advanced_training.random_crop,
|
|
advanced_training.bucket_reso_steps,
|
|
advanced_training.v_pred_like_loss,
|
|
advanced_training.caption_dropout_every_n_epochs,
|
|
advanced_training.caption_dropout_rate,
|
|
basic_training.optimizer,
|
|
basic_training.optimizer_args,
|
|
basic_training.lr_scheduler_args,
|
|
advanced_training.noise_offset_type,
|
|
advanced_training.noise_offset,
|
|
advanced_training.noise_offset_random_strength,
|
|
advanced_training.adaptive_noise_scale,
|
|
advanced_training.multires_noise_iterations,
|
|
advanced_training.multires_noise_discount,
|
|
advanced_training.ip_noise_gamma,
|
|
advanced_training.ip_noise_gamma_random_strength,
|
|
sample.sample_every_n_steps,
|
|
sample.sample_every_n_epochs,
|
|
sample.sample_sampler,
|
|
sample.sample_prompts,
|
|
advanced_training.additional_parameters,
|
|
advanced_training.loss_type,
|
|
advanced_training.huber_schedule,
|
|
advanced_training.huber_c,
|
|
advanced_training.vae_batch_size,
|
|
advanced_training.min_snr_gamma,
|
|
advanced_training.save_every_n_steps,
|
|
advanced_training.save_last_n_steps,
|
|
advanced_training.save_last_n_steps_state,
|
|
advanced_training.log_with,
|
|
advanced_training.wandb_api_key,
|
|
advanced_training.wandb_run_name,
|
|
advanced_training.log_tracker_name,
|
|
advanced_training.log_tracker_config,
|
|
advanced_training.scale_v_pred_loss_like_noise_pred,
|
|
advanced_training.min_timestep,
|
|
advanced_training.max_timestep,
|
|
sdxl_params.sdxl_no_half_vae,
|
|
huggingface.huggingface_repo_id,
|
|
huggingface.huggingface_token,
|
|
huggingface.huggingface_repo_type,
|
|
huggingface.huggingface_repo_visibility,
|
|
huggingface.huggingface_path_in_repo,
|
|
huggingface.save_state_to_huggingface,
|
|
huggingface.resume_from_huggingface,
|
|
huggingface.async_upload,
|
|
metadata.metadata_author,
|
|
metadata.metadata_description,
|
|
metadata.metadata_license,
|
|
metadata.metadata_tags,
|
|
metadata.metadata_title,
|
|
]
|
|
|
|
configuration.button_open_config.click(
|
|
open_configuration,
|
|
inputs=[dummy_db_true, configuration.config_file_name] + settings_list,
|
|
outputs=[configuration.config_file_name] + settings_list,
|
|
show_progress=False,
|
|
)
|
|
|
|
configuration.button_load_config.click(
|
|
open_configuration,
|
|
inputs=[dummy_db_false, configuration.config_file_name] + settings_list,
|
|
outputs=[configuration.config_file_name] + settings_list,
|
|
show_progress=False,
|
|
)
|
|
|
|
configuration.button_save_config.click(
|
|
save_configuration,
|
|
inputs=[dummy_db_false, configuration.config_file_name] + settings_list,
|
|
outputs=[configuration.config_file_name],
|
|
show_progress=False,
|
|
)
|
|
|
|
run_state = gr.Textbox(value=train_state_value, visible=False)
|
|
|
|
run_state.change(
|
|
fn=executor.wait_for_training_to_end,
|
|
outputs=[executor.button_run, executor.button_stop_training],
|
|
)
|
|
|
|
executor.button_run.click(
|
|
train_model,
|
|
inputs=[dummy_headless] + [dummy_db_false] + settings_list,
|
|
outputs=[executor.button_run, executor.button_stop_training, run_state],
|
|
show_progress=False,
|
|
)
|
|
|
|
executor.button_stop_training.click(
|
|
executor.kill_command, outputs=[executor.button_run, executor.button_stop_training]
|
|
)
|
|
|
|
button_print.click(
|
|
train_model,
|
|
inputs=[dummy_headless] + [dummy_db_true] + settings_list,
|
|
show_progress=False,
|
|
)
|
|
|
|
return (
|
|
source_model.train_data_dir,
|
|
folders.reg_data_dir,
|
|
folders.output_dir,
|
|
folders.logging_dir,
|
|
)
|
|
|