Spaces:
Runtime error
Runtime error
Merge branch 'dev-2' of github.com:zetavg/llama-lora into dev-2
Browse files- .gitignore +1 -0
- README.md +2 -1
- app.py +27 -1
- llama_lora/globals.py +5 -0
- llama_lora/lib/finetune.py +75 -22
- llama_lora/lib/get_device.py +15 -0
- llama_lora/lib/inference.py +65 -0
- llama_lora/{utils/callbacks.py → lib/streaming_generation_utils.py} +0 -0
- llama_lora/models.py +5 -16
- llama_lora/ui/finetune_ui.py +119 -162
- llama_lora/ui/inference_ui.py +45 -17
- llama_lora/utils/data.py +1 -1
- llama_lora/utils/prompter.py +139 -22
.gitignore
CHANGED
@@ -3,4 +3,5 @@ __pycache__/
|
|
3 |
/venv
|
4 |
.vscode
|
5 |
|
|
|
6 |
/data
|
|
|
3 |
/venv
|
4 |
.vscode
|
5 |
|
6 |
+
/wandb
|
7 |
/data
|
README.md
CHANGED
@@ -60,13 +60,14 @@ file_mounts:
|
|
60 |
setup: |
|
61 |
git clone https://github.com/zetavg/LLaMA-LoRA-Tuner.git llama_lora_tuner
|
62 |
cd llama_lora_tuner && pip install -r requirements.lock.txt
|
|
|
63 |
cd ..
|
64 |
echo 'Dependencies installed.'
|
65 |
|
66 |
# Start the app.
|
67 |
run: |
|
68 |
echo 'Starting...'
|
69 |
-
python llama_lora_tuner/app.py --data_dir='/data' --base_model='decapoda-research/llama-7b-hf' --share
|
70 |
```
|
71 |
|
72 |
Then launch a cluster to run the task:
|
|
|
60 |
setup: |
|
61 |
git clone https://github.com/zetavg/LLaMA-LoRA-Tuner.git llama_lora_tuner
|
62 |
cd llama_lora_tuner && pip install -r requirements.lock.txt
|
63 |
+
pip install wandb
|
64 |
cd ..
|
65 |
echo 'Dependencies installed.'
|
66 |
|
67 |
# Start the app.
|
68 |
run: |
|
69 |
echo 'Starting...'
|
70 |
+
python llama_lora_tuner/app.py --data_dir='/data' --wandb_api_key "$([ -f /data/secrets/wandb_api_key ] && cat /data/secrets/wandb_api_key | tr -d '\n')" --base_model='decapoda-research/llama-7b-hf' --share
|
71 |
```
|
72 |
|
73 |
Then launch a cluster to run the task:
|
app.py
CHANGED
@@ -5,21 +5,37 @@ import fire
|
|
5 |
import gradio as gr
|
6 |
|
7 |
from llama_lora.globals import Global
|
|
|
8 |
from llama_lora.ui.main_page import main_page, get_page_title, main_page_custom_css
|
9 |
from llama_lora.utils.data import init_data_dir
|
10 |
|
11 |
|
|
|
12 |
def main(
|
13 |
-
load_8bit: bool = False,
|
14 |
base_model: str = "",
|
15 |
data_dir: str = "",
|
16 |
# Allows to listen on all interfaces by providing '0.0.0.0'.
|
17 |
server_name: str = "127.0.0.1",
|
18 |
share: bool = False,
|
19 |
skip_loading_base_model: bool = False,
|
|
|
20 |
ui_show_sys_info: bool = True,
|
21 |
ui_dev_mode: bool = False,
|
|
|
|
|
22 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
base_model = base_model or os.environ.get("LLAMA_LORA_BASE_MODEL", "")
|
24 |
data_dir = data_dir or os.environ.get("LLAMA_LORA_DATA_DIR", "")
|
25 |
assert (
|
@@ -34,12 +50,22 @@ def main(
|
|
34 |
Global.data_dir = os.path.abspath(data_dir)
|
35 |
Global.load_8bit = load_8bit
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
Global.ui_dev_mode = ui_dev_mode
|
38 |
Global.ui_show_sys_info = ui_show_sys_info
|
39 |
|
40 |
os.makedirs(data_dir, exist_ok=True)
|
41 |
init_data_dir()
|
42 |
|
|
|
|
|
|
|
43 |
with gr.Blocks(title=get_page_title(), css=main_page_custom_css()) as demo:
|
44 |
main_page()
|
45 |
|
|
|
5 |
import gradio as gr
|
6 |
|
7 |
from llama_lora.globals import Global
|
8 |
+
from llama_lora.models import prepare_base_model
|
9 |
from llama_lora.ui.main_page import main_page, get_page_title, main_page_custom_css
|
10 |
from llama_lora.utils.data import init_data_dir
|
11 |
|
12 |
|
13 |
+
|
14 |
def main(
|
|
|
15 |
base_model: str = "",
|
16 |
data_dir: str = "",
|
17 |
# Allows to listen on all interfaces by providing '0.0.0.0'.
|
18 |
server_name: str = "127.0.0.1",
|
19 |
share: bool = False,
|
20 |
skip_loading_base_model: bool = False,
|
21 |
+
load_8bit: bool = False,
|
22 |
ui_show_sys_info: bool = True,
|
23 |
ui_dev_mode: bool = False,
|
24 |
+
wandb_api_key: str = "",
|
25 |
+
wandb_project: str = "",
|
26 |
):
|
27 |
+
'''
|
28 |
+
Start the LLaMA-LoRA Tuner UI.
|
29 |
+
|
30 |
+
:param base_model: (required) The name of the default base model to use.
|
31 |
+
:param data_dir: (required) The path to the directory to store data.
|
32 |
+
:param server_name: Allows to listen on all interfaces by providing '0.0.0.0'.
|
33 |
+
:param share: Create a public Gradio URL.
|
34 |
+
|
35 |
+
:param wandb_api_key: The API key for Weights & Biases. Setting either this or `wandb_project` will enable Weights & Biases.
|
36 |
+
:param wandb_project: The default project name for Weights & Biases. Setting either this or `wandb_api_key` will enable Weights & Biases.
|
37 |
+
'''
|
38 |
+
|
39 |
base_model = base_model or os.environ.get("LLAMA_LORA_BASE_MODEL", "")
|
40 |
data_dir = data_dir or os.environ.get("LLAMA_LORA_DATA_DIR", "")
|
41 |
assert (
|
|
|
50 |
Global.data_dir = os.path.abspath(data_dir)
|
51 |
Global.load_8bit = load_8bit
|
52 |
|
53 |
+
if len(wandb_api_key) > 0:
|
54 |
+
Global.enable_wandb = True
|
55 |
+
Global.wandb_api_key = wandb_api_key
|
56 |
+
if len(wandb_project) > 0:
|
57 |
+
Global.enable_wandb = True
|
58 |
+
Global.wandb_project = wandb_project
|
59 |
+
|
60 |
Global.ui_dev_mode = ui_dev_mode
|
61 |
Global.ui_show_sys_info = ui_show_sys_info
|
62 |
|
63 |
os.makedirs(data_dir, exist_ok=True)
|
64 |
init_data_dir()
|
65 |
|
66 |
+
if (not skip_loading_base_model) and (not ui_dev_mode):
|
67 |
+
prepare_base_model(base_model)
|
68 |
+
|
69 |
with gr.Blocks(title=get_page_title(), css=main_page_custom_css()) as demo:
|
70 |
main_page()
|
71 |
|
llama_lora/globals.py
CHANGED
@@ -40,6 +40,11 @@ class Global:
|
|
40 |
gpu_total_cores = None # GPU total cores
|
41 |
gpu_total_memory = None
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
# UI related
|
44 |
ui_title: str = "LLaMA-LoRA Tuner"
|
45 |
ui_emoji: str = "🦙🎛️"
|
|
|
40 |
gpu_total_cores = None # GPU total cores
|
41 |
gpu_total_memory = None
|
42 |
|
43 |
+
# WandB
|
44 |
+
enable_wandb = False
|
45 |
+
wandb_api_key = None
|
46 |
+
default_wandb_project = "llama-lora-tuner"
|
47 |
+
|
48 |
# UI related
|
49 |
ui_title: str = "LLaMA-LoRA Tuner"
|
50 |
ui_emoji: str = "🦙🎛️"
|
llama_lora/lib/finetune.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import sys
|
|
|
3 |
from typing import Any, List
|
4 |
|
5 |
import json
|
@@ -50,8 +51,66 @@ def train(
|
|
50 |
save_total_limit: int = 3,
|
51 |
logging_steps: int = 10,
|
52 |
# logging
|
53 |
-
callbacks: List[Any] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
if os.path.exists(output_dir):
|
56 |
if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
|
57 |
raise ValueError(
|
@@ -138,6 +197,8 @@ def train(
|
|
138 |
|
139 |
# If train_dataset_data is a list, convert it to datasets.Dataset
|
140 |
if isinstance(train_dataset_data, list):
|
|
|
|
|
141 |
train_dataset_data = Dataset.from_list(train_dataset_data)
|
142 |
|
143 |
if resume_from_checkpoint:
|
@@ -197,15 +258,15 @@ def train(
|
|
197 |
optim="adamw_torch",
|
198 |
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
199 |
save_strategy="steps",
|
200 |
-
eval_steps=
|
201 |
save_steps=save_steps,
|
202 |
output_dir=output_dir,
|
203 |
save_total_limit=save_total_limit,
|
204 |
load_best_model_at_end=True if val_set_size > 0 else False,
|
205 |
ddp_find_unused_parameters=False if ddp else None,
|
206 |
group_by_length=group_by_length,
|
207 |
-
|
208 |
-
|
209 |
),
|
210 |
data_collator=transformers.DataCollatorForSeq2Seq(
|
211 |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
@@ -217,24 +278,16 @@ def train(
|
|
217 |
os.makedirs(output_dir)
|
218 |
with open(os.path.join(output_dir, "trainer_args.json"), 'w') as trainer_args_json_file:
|
219 |
json.dump(trainer.args.to_dict(), trainer_args_json_file, indent=2)
|
220 |
-
with open(os.path.join(output_dir, "
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
'lora_target_modules': lora_target_modules,
|
231 |
-
'train_on_inputs': train_on_inputs,
|
232 |
-
'group_by_length': group_by_length,
|
233 |
-
'save_steps': save_steps,
|
234 |
-
'save_total_limit': save_total_limit,
|
235 |
-
'logging_steps': logging_steps,
|
236 |
-
}
|
237 |
-
json.dump(finetune_params, finetune_params_json_file, indent=2)
|
238 |
|
239 |
model.config.use_cache = False
|
240 |
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
+
import importlib
|
4 |
from typing import Any, List
|
5 |
|
6 |
import json
|
|
|
51 |
save_total_limit: int = 3,
|
52 |
logging_steps: int = 10,
|
53 |
# logging
|
54 |
+
callbacks: List[Any] = [],
|
55 |
+
# wandb params
|
56 |
+
wandb_api_key = None,
|
57 |
+
wandb_project: str = "",
|
58 |
+
wandb_group = None,
|
59 |
+
wandb_run_name: str = "",
|
60 |
+
wandb_tags: List[str] = [],
|
61 |
+
wandb_watch: str = "false", # options: false | gradients | all
|
62 |
+
wandb_log_model: str = "true", # options: false | true
|
63 |
):
|
64 |
+
# for logging
|
65 |
+
finetune_args = {
|
66 |
+
'micro_batch_size': micro_batch_size,
|
67 |
+
'gradient_accumulation_steps': gradient_accumulation_steps,
|
68 |
+
'num_train_epochs': num_train_epochs,
|
69 |
+
'learning_rate': learning_rate,
|
70 |
+
'cutoff_len': cutoff_len,
|
71 |
+
'lora_r': lora_r,
|
72 |
+
'lora_alpha': lora_alpha,
|
73 |
+
'lora_dropout': lora_dropout,
|
74 |
+
'lora_target_modules': lora_target_modules,
|
75 |
+
'train_on_inputs': train_on_inputs,
|
76 |
+
'group_by_length': group_by_length,
|
77 |
+
'save_steps': save_steps,
|
78 |
+
'save_total_limit': save_total_limit,
|
79 |
+
'logging_steps': logging_steps,
|
80 |
+
}
|
81 |
+
|
82 |
+
if wandb_api_key:
|
83 |
+
os.environ["WANDB_API_KEY"] = wandb_api_key
|
84 |
+
|
85 |
+
# wandb: WARNING Changes to your `wandb` environment variables will be ignored because your `wandb` session has already started. For more information on how to modify your settings with `wandb.init()` arguments, please refer to https://wandb.me/wandb-init.
|
86 |
+
# if wandb_project:
|
87 |
+
# os.environ["WANDB_PROJECT"] = wandb_project
|
88 |
+
# if wandb_run_name:
|
89 |
+
# os.environ["WANDB_RUN_NAME"] = wandb_run_name
|
90 |
+
if wandb_watch:
|
91 |
+
os.environ["WANDB_WATCH"] = wandb_watch
|
92 |
+
if wandb_log_model:
|
93 |
+
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
|
94 |
+
use_wandb = (wandb_project and len(wandb_project) > 0) or (
|
95 |
+
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
|
96 |
+
)
|
97 |
+
if use_wandb:
|
98 |
+
os.environ['WANDB_MODE'] = "online"
|
99 |
+
wandb = importlib.import_module("wandb")
|
100 |
+
wandb.init(
|
101 |
+
project=wandb_project,
|
102 |
+
resume="auto",
|
103 |
+
group=wandb_group,
|
104 |
+
name=wandb_run_name,
|
105 |
+
tags=wandb_tags,
|
106 |
+
reinit=True,
|
107 |
+
magic=True,
|
108 |
+
config={'finetune_args': finetune_args},
|
109 |
+
# id=None # used for resuming
|
110 |
+
)
|
111 |
+
else:
|
112 |
+
os.environ['WANDB_MODE'] = "disabled"
|
113 |
+
|
114 |
if os.path.exists(output_dir):
|
115 |
if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
|
116 |
raise ValueError(
|
|
|
197 |
|
198 |
# If train_dataset_data is a list, convert it to datasets.Dataset
|
199 |
if isinstance(train_dataset_data, list):
|
200 |
+
with open(os.path.join(output_dir, "train_data_samples.json"), 'w') as file:
|
201 |
+
json.dump(list(train_dataset_data[:100]), file, indent=2)
|
202 |
train_dataset_data = Dataset.from_list(train_dataset_data)
|
203 |
|
204 |
if resume_from_checkpoint:
|
|
|
258 |
optim="adamw_torch",
|
259 |
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
260 |
save_strategy="steps",
|
261 |
+
eval_steps=save_steps if val_set_size > 0 else None,
|
262 |
save_steps=save_steps,
|
263 |
output_dir=output_dir,
|
264 |
save_total_limit=save_total_limit,
|
265 |
load_best_model_at_end=True if val_set_size > 0 else False,
|
266 |
ddp_find_unused_parameters=False if ddp else None,
|
267 |
group_by_length=group_by_length,
|
268 |
+
report_to="wandb" if use_wandb else None,
|
269 |
+
run_name=wandb_run_name if use_wandb else None,
|
270 |
),
|
271 |
data_collator=transformers.DataCollatorForSeq2Seq(
|
272 |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
|
|
278 |
os.makedirs(output_dir)
|
279 |
with open(os.path.join(output_dir, "trainer_args.json"), 'w') as trainer_args_json_file:
|
280 |
json.dump(trainer.args.to_dict(), trainer_args_json_file, indent=2)
|
281 |
+
with open(os.path.join(output_dir, "finetune_args.json"), 'w') as finetune_args_json_file:
|
282 |
+
json.dump(finetune_args, finetune_args_json_file, indent=2)
|
283 |
+
|
284 |
+
# Not working, will only give us ["prompt", "completion", "input_ids", "attention_mask", "labels"]
|
285 |
+
# if train_data:
|
286 |
+
# with open(os.path.join(output_dir, "train_dataset_samples.json"), 'w') as file:
|
287 |
+
# json.dump(list(train_data[:100]), file, indent=2)
|
288 |
+
# if val_data:
|
289 |
+
# with open(os.path.join(output_dir, "eval_dataset_samples.json"), 'w') as file:
|
290 |
+
# json.dump(list(val_data[:100]), file, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
model.config.use_cache = False
|
293 |
|
llama_lora/lib/get_device.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def get_device():
|
5 |
+
device ="cpu"
|
6 |
+
if torch.cuda.is_available():
|
7 |
+
device = "cuda"
|
8 |
+
|
9 |
+
try:
|
10 |
+
if torch.backends.mps.is_available():
|
11 |
+
device = "mps"
|
12 |
+
except: # noqa: E722
|
13 |
+
pass
|
14 |
+
|
15 |
+
return device
|
llama_lora/lib/inference.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
|
4 |
+
from .get_device import get_device
|
5 |
+
from .streaming_generation_utils import Iteratorize, Stream
|
6 |
+
|
7 |
+
|
8 |
+
def generate(
|
9 |
+
# model
|
10 |
+
model,
|
11 |
+
tokenizer,
|
12 |
+
# input
|
13 |
+
prompt,
|
14 |
+
generation_config,
|
15 |
+
max_new_tokens,
|
16 |
+
stopping_criteria=[],
|
17 |
+
# output options
|
18 |
+
stream_output=False
|
19 |
+
):
|
20 |
+
device = get_device()
|
21 |
+
|
22 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
23 |
+
input_ids = inputs["input_ids"].to(device)
|
24 |
+
generate_params = {
|
25 |
+
"input_ids": input_ids,
|
26 |
+
"generation_config": generation_config,
|
27 |
+
"return_dict_in_generate": True,
|
28 |
+
"output_scores": True,
|
29 |
+
"max_new_tokens": max_new_tokens,
|
30 |
+
"stopping_criteria": transformers.StoppingCriteriaList() + stopping_criteria
|
31 |
+
}
|
32 |
+
|
33 |
+
if stream_output:
|
34 |
+
# Stream the reply 1 token at a time.
|
35 |
+
# This is based on the trick of using 'stopping_criteria' to create an iterator,
|
36 |
+
# from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.
|
37 |
+
|
38 |
+
def generate_with_callback(callback=None, **kwargs):
|
39 |
+
kwargs["stopping_criteria"].insert(
|
40 |
+
0,
|
41 |
+
Stream(callback_func=callback)
|
42 |
+
)
|
43 |
+
with torch.no_grad():
|
44 |
+
model.generate(**kwargs)
|
45 |
+
|
46 |
+
def generate_with_streaming(**kwargs):
|
47 |
+
return Iteratorize(
|
48 |
+
generate_with_callback, kwargs, callback=None
|
49 |
+
)
|
50 |
+
|
51 |
+
with generate_with_streaming(**generate_params) as generator:
|
52 |
+
for output in generator:
|
53 |
+
decoded_output = tokenizer.decode(output, skip_special_tokens=True)
|
54 |
+
yield decoded_output, output
|
55 |
+
if output[-1] in [tokenizer.eos_token_id]:
|
56 |
+
break
|
57 |
+
return # early return for stream_output
|
58 |
+
|
59 |
+
# Without streaming
|
60 |
+
with torch.no_grad():
|
61 |
+
generation_output = model.generate(**generate_params)
|
62 |
+
output = generation_output.sequences[0]
|
63 |
+
decoded_output = tokenizer.decode(output, skip_special_tokens=True)
|
64 |
+
yield decoded_output, output
|
65 |
+
return
|
llama_lora/{utils/callbacks.py → lib/streaming_generation_utils.py}
RENAMED
File without changes
|
llama_lora/models.py
CHANGED
@@ -8,19 +8,7 @@ from transformers import LlamaForCausalLM, LlamaTokenizer
|
|
8 |
from peft import PeftModel
|
9 |
|
10 |
from .globals import Global
|
11 |
-
|
12 |
-
|
13 |
-
def get_device():
|
14 |
-
if torch.cuda.is_available():
|
15 |
-
return "cuda"
|
16 |
-
else:
|
17 |
-
return "cpu"
|
18 |
-
|
19 |
-
try:
|
20 |
-
if torch.backends.mps.is_available():
|
21 |
-
return "mps"
|
22 |
-
except: # noqa: E722
|
23 |
-
pass
|
24 |
|
25 |
|
26 |
def get_new_base_model(base_model_name):
|
@@ -60,9 +48,10 @@ def get_new_base_model(base_model_name):
|
|
60 |
base_model_name, device_map={"": device}, low_cpu_mem_usage=True
|
61 |
)
|
62 |
|
63 |
-
|
64 |
-
model.config.
|
65 |
-
model.config.
|
|
|
66 |
|
67 |
return model
|
68 |
|
|
|
8 |
from peft import PeftModel
|
9 |
|
10 |
from .globals import Global
|
11 |
+
from .lib.get_device import get_device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
def get_new_base_model(base_model_name):
|
|
|
48 |
base_model_name, device_map={"": device}, low_cpu_mem_usage=True
|
49 |
)
|
50 |
|
51 |
+
tokenizer = get_tokenizer(base_model_name)
|
52 |
+
model.config.pad_token_id = tokenizer.pad_token_id = 0
|
53 |
+
model.config.bos_token_id = tokenizer.bos_token_id = 1
|
54 |
+
model.config.eos_token_id = tokenizer.eos_token_id = 2
|
55 |
|
56 |
return model
|
57 |
|
llama_lora/ui/finetune_ui.py
CHANGED
@@ -79,56 +79,50 @@ def load_sample_dataset_to_text_input(format):
|
|
79 |
return gr.Code.update(value=sample_plain_text_value)
|
80 |
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
{k: v for k, v in d.items() if k != "output"},
|
127 |
-
"output":
|
128 |
-
d["output"]
|
129 |
-
}
|
130 |
-
for d in data
|
131 |
-
]
|
132 |
return data
|
133 |
|
134 |
|
@@ -144,75 +138,59 @@ def refresh_preview(
|
|
144 |
preview_show_actual_prompt,
|
145 |
):
|
146 |
try:
|
147 |
-
max_preview_count =
|
148 |
prompter = Prompter(template)
|
149 |
variable_names = prompter.get_variable_names()
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
try:
|
162 |
-
data.append(json.loads(line))
|
163 |
-
except Exception as e:
|
164 |
-
raise ValueError(
|
165 |
-
f"Error parsing JSON on line {line_number}: {e}")
|
166 |
-
|
167 |
-
data = process_json_dataset(data)
|
168 |
-
|
169 |
-
else: # Plain Text
|
170 |
-
data = parse_plain_text_input(
|
171 |
-
dataset_text,
|
172 |
-
(
|
173 |
-
dataset_plain_text_input_variables_separator or
|
174 |
-
default_dataset_plain_text_input_variables_separator
|
175 |
-
).replace("\\n", "\n"),
|
176 |
-
(
|
177 |
-
dataset_plain_text_input_and_output_separator or
|
178 |
-
default_dataset_plain_text_input_and_output_separator
|
179 |
-
).replace("\\n", "\n"),
|
180 |
-
(
|
181 |
-
dataset_plain_text_data_separator or
|
182 |
-
default_dataset_plain_text_data_separator
|
183 |
-
).replace("\\n", "\n"),
|
184 |
-
variable_names
|
185 |
-
)
|
186 |
|
187 |
-
|
188 |
-
data = get_dataset_content(dataset_from_data_dir)
|
189 |
-
data = process_json_dataset(data)
|
190 |
|
191 |
data_count = len(data)
|
192 |
-
|
|
|
193 |
preview_data = [
|
194 |
-
[item
|
195 |
-
for item in
|
196 |
]
|
197 |
|
198 |
-
if
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
208 |
|
209 |
-
|
|
|
|
|
|
|
|
|
210 |
if data_count > max_preview_count:
|
211 |
preview_info_message += f" Previewing the first {max_preview_count}."
|
212 |
|
213 |
info_message = f"{data_count} item(s)."
|
214 |
if load_dataset_from == "Data Dir":
|
215 |
-
info_message = "This dataset contains " + info_message
|
216 |
update_message = gr.Markdown.update(info_message, visible=True)
|
217 |
|
218 |
return gr.Dataframe.update(value={'data': preview_data, 'headers': headers}), gr.Markdown.update(preview_info_message), update_message, update_message
|
@@ -288,57 +266,24 @@ def do_train(
|
|
288 |
unload_models() # Need RAM for training
|
289 |
|
290 |
prompter = Prompter(template)
|
291 |
-
variable_names = prompter.get_variable_names()
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
try:
|
304 |
-
data.append(json.loads(line))
|
305 |
-
except Exception as e:
|
306 |
-
raise ValueError(
|
307 |
-
f"Error parsing JSON on line {line_number}: {e}")
|
308 |
-
|
309 |
-
data = process_json_dataset(data)
|
310 |
-
|
311 |
-
else: # Plain Text
|
312 |
-
data = parse_plain_text_input(
|
313 |
-
dataset_text,
|
314 |
-
(
|
315 |
-
dataset_plain_text_input_variables_separator or
|
316 |
-
default_dataset_plain_text_input_variables_separator
|
317 |
-
).replace("\\n", "\n"),
|
318 |
-
(
|
319 |
-
dataset_plain_text_input_and_output_separator or
|
320 |
-
default_dataset_plain_text_input_and_output_separator
|
321 |
-
).replace("\\n", "\n"),
|
322 |
-
(
|
323 |
-
dataset_plain_text_data_separator or
|
324 |
-
default_dataset_plain_text_data_separator
|
325 |
-
).replace("\\n", "\n"),
|
326 |
-
variable_names
|
327 |
-
)
|
328 |
|
329 |
-
|
330 |
-
data = get_dataset_content(dataset_from_data_dir)
|
331 |
-
data = process_json_dataset(data)
|
332 |
|
333 |
-
data_count = len(
|
334 |
evaluate_data_count = math.ceil(data_count * evaluate_data_percentage)
|
335 |
|
336 |
-
train_data = [
|
337 |
-
{
|
338 |
-
'prompt': prompter.generate_prompt(d['variables']),
|
339 |
-
'completion': d['output']}
|
340 |
-
for d in data]
|
341 |
-
|
342 |
def get_progress_text(epoch, epochs, last_loss):
|
343 |
progress_detail = f"Epoch {math.ceil(epoch)}/{epochs}"
|
344 |
if last_loss is not None:
|
@@ -449,26 +394,33 @@ Train data (first 10):
|
|
449 |
'dataset_rows': len(train_data),
|
450 |
'timestamp': time.time(),
|
451 |
|
452 |
-
|
453 |
-
'
|
|
|
454 |
|
455 |
-
'micro_batch_size': micro_batch_size,
|
456 |
-
'gradient_accumulation_steps': gradient_accumulation_steps,
|
457 |
-
'epochs': epochs,
|
458 |
-
'learning_rate': learning_rate,
|
459 |
|
460 |
-
'evaluate_data_percentage': evaluate_data_percentage,
|
461 |
|
462 |
-
'lora_r': lora_r,
|
463 |
-
'lora_alpha': lora_alpha,
|
464 |
-
'lora_dropout': lora_dropout,
|
465 |
-
'lora_target_modules': lora_target_modules,
|
466 |
}
|
467 |
json.dump(info, info_json_file, indent=2)
|
468 |
|
469 |
if not should_training_progress_track_tqdm:
|
470 |
progress(0, desc="Train starting...")
|
471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
train_output = Global.train_fn(
|
473 |
base_model, # base_model
|
474 |
tokenizer, # tokenizer
|
@@ -491,7 +443,12 @@ Train data (first 10):
|
|
491 |
save_steps, # save_steps
|
492 |
save_total_limit, # save_total_limit
|
493 |
logging_steps, # logging_steps
|
494 |
-
training_callbacks # callbacks
|
|
|
|
|
|
|
|
|
|
|
495 |
)
|
496 |
|
497 |
logs_str = "\n".join([json.dumps(log)
|
|
|
79 |
return gr.Code.update(value=sample_plain_text_value)
|
80 |
|
81 |
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def get_data_from_input(load_dataset_from, dataset_text, dataset_text_format,
|
86 |
+
dataset_plain_text_input_variables_separator,
|
87 |
+
dataset_plain_text_input_and_output_separator,
|
88 |
+
dataset_plain_text_data_separator,
|
89 |
+
dataset_from_data_dir, prompter):
|
90 |
+
if load_dataset_from == "Text Input":
|
91 |
+
if dataset_text_format == "JSON":
|
92 |
+
data = json.loads(dataset_text)
|
93 |
+
|
94 |
+
elif dataset_text_format == "JSON Lines":
|
95 |
+
lines = dataset_text.split('\n')
|
96 |
+
data = []
|
97 |
+
for i, line in enumerate(lines):
|
98 |
+
line_number = i + 1
|
99 |
+
try:
|
100 |
+
data.append(json.loads(line))
|
101 |
+
except Exception as e:
|
102 |
+
raise ValueError(
|
103 |
+
f"Error parsing JSON on line {line_number}: {e}")
|
104 |
+
|
105 |
+
else: # Plain Text
|
106 |
+
data = parse_plain_text_input(
|
107 |
+
dataset_text,
|
108 |
+
(
|
109 |
+
dataset_plain_text_input_variables_separator or
|
110 |
+
default_dataset_plain_text_input_variables_separator
|
111 |
+
).replace("\\n", "\n"),
|
112 |
+
(
|
113 |
+
dataset_plain_text_input_and_output_separator or
|
114 |
+
default_dataset_plain_text_input_and_output_separator
|
115 |
+
).replace("\\n", "\n"),
|
116 |
+
(
|
117 |
+
dataset_plain_text_data_separator or
|
118 |
+
default_dataset_plain_text_data_separator
|
119 |
+
).replace("\\n", "\n"),
|
120 |
+
prompter.get_variable_names()
|
121 |
+
)
|
122 |
+
|
123 |
+
else: # Load dataset from data directory
|
124 |
+
data = get_dataset_content(dataset_from_data_dir)
|
125 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
return data
|
127 |
|
128 |
|
|
|
138 |
preview_show_actual_prompt,
|
139 |
):
|
140 |
try:
|
141 |
+
max_preview_count = 30
|
142 |
prompter = Prompter(template)
|
143 |
variable_names = prompter.get_variable_names()
|
144 |
|
145 |
+
data = get_data_from_input(
|
146 |
+
load_dataset_from=load_dataset_from,
|
147 |
+
dataset_text=dataset_text,
|
148 |
+
dataset_text_format=dataset_text_format,
|
149 |
+
dataset_plain_text_input_variables_separator=dataset_plain_text_input_variables_separator,
|
150 |
+
dataset_plain_text_input_and_output_separator=dataset_plain_text_input_and_output_separator,
|
151 |
+
dataset_plain_text_data_separator=dataset_plain_text_data_separator,
|
152 |
+
dataset_from_data_dir=dataset_from_data_dir,
|
153 |
+
prompter=prompter
|
154 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
train_data = prompter.get_train_data_from_dataset(data, max_preview_count)
|
|
|
|
|
157 |
|
158 |
data_count = len(data)
|
159 |
+
|
160 |
+
headers = ['Prompt', 'Completion']
|
161 |
preview_data = [
|
162 |
+
[item.get("prompt", ""), item.get("completion", "")]
|
163 |
+
for item in train_data
|
164 |
]
|
165 |
|
166 |
+
if not prompter.template_module:
|
167 |
+
variable_names = prompter.get_variable_names()
|
168 |
+
headers += [f"Variable: {variable_name}" for variable_name in variable_names]
|
169 |
+
variables = [
|
170 |
+
[item.get(f"_var_{name}", "") for name in variable_names]
|
171 |
+
for item in train_data
|
172 |
+
]
|
173 |
+
preview_data = [d + v for d, v in zip(preview_data, variables)]
|
174 |
+
|
175 |
|
176 |
+
# if preview_show_actual_prompt:
|
177 |
+
# headers = headers + ["Prompt (actual input)"]
|
178 |
+
# rendered = [prompter.generate_prompt(
|
179 |
+
# item['variables']) for item in data[:max_preview_count]]
|
180 |
+
# preview_data = result = [d + [i]
|
181 |
+
# for d, i in zip(preview_data, rendered)]
|
182 |
|
183 |
+
# headers = headers + ["Completion (output)"]
|
184 |
+
# preview_data = result = [pd + [d['output']]
|
185 |
+
# for pd, d in zip(preview_data, data[:max_preview_count])]
|
186 |
+
|
187 |
+
preview_info_message = f"The dataset has about {data_count} item(s)."
|
188 |
if data_count > max_preview_count:
|
189 |
preview_info_message += f" Previewing the first {max_preview_count}."
|
190 |
|
191 |
info_message = f"{data_count} item(s)."
|
192 |
if load_dataset_from == "Data Dir":
|
193 |
+
info_message = "This dataset contains about " + info_message
|
194 |
update_message = gr.Markdown.update(info_message, visible=True)
|
195 |
|
196 |
return gr.Dataframe.update(value={'data': preview_data, 'headers': headers}), gr.Markdown.update(preview_info_message), update_message, update_message
|
|
|
266 |
unload_models() # Need RAM for training
|
267 |
|
268 |
prompter = Prompter(template)
|
269 |
+
# variable_names = prompter.get_variable_names()
|
270 |
+
|
271 |
+
data = get_data_from_input(
|
272 |
+
load_dataset_from=load_dataset_from,
|
273 |
+
dataset_text=dataset_text,
|
274 |
+
dataset_text_format=dataset_text_format,
|
275 |
+
dataset_plain_text_input_variables_separator=dataset_plain_text_input_variables_separator,
|
276 |
+
dataset_plain_text_input_and_output_separator=dataset_plain_text_input_and_output_separator,
|
277 |
+
dataset_plain_text_data_separator=dataset_plain_text_data_separator,
|
278 |
+
dataset_from_data_dir=dataset_from_data_dir,
|
279 |
+
prompter=prompter
|
280 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
+
train_data = prompter.get_train_data_from_dataset(data)
|
|
|
|
|
283 |
|
284 |
+
data_count = len(train_data)
|
285 |
evaluate_data_count = math.ceil(data_count * evaluate_data_percentage)
|
286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
def get_progress_text(epoch, epochs, last_loss):
|
288 |
progress_detail = f"Epoch {math.ceil(epoch)}/{epochs}"
|
289 |
if last_loss is not None:
|
|
|
394 |
'dataset_rows': len(train_data),
|
395 |
'timestamp': time.time(),
|
396 |
|
397 |
+
# These will be saved in another JSON file by the train function
|
398 |
+
# 'max_seq_length': max_seq_length,
|
399 |
+
# 'train_on_inputs': train_on_inputs,
|
400 |
|
401 |
+
# 'micro_batch_size': micro_batch_size,
|
402 |
+
# 'gradient_accumulation_steps': gradient_accumulation_steps,
|
403 |
+
# 'epochs': epochs,
|
404 |
+
# 'learning_rate': learning_rate,
|
405 |
|
406 |
+
# 'evaluate_data_percentage': evaluate_data_percentage,
|
407 |
|
408 |
+
# 'lora_r': lora_r,
|
409 |
+
# 'lora_alpha': lora_alpha,
|
410 |
+
# 'lora_dropout': lora_dropout,
|
411 |
+
# 'lora_target_modules': lora_target_modules,
|
412 |
}
|
413 |
json.dump(info, info_json_file, indent=2)
|
414 |
|
415 |
if not should_training_progress_track_tqdm:
|
416 |
progress(0, desc="Train starting...")
|
417 |
|
418 |
+
wandb_group = template
|
419 |
+
wandb_tags = [f"template:{template}"]
|
420 |
+
if load_dataset_from == "Data Dir" and dataset_from_data_dir:
|
421 |
+
wandb_group += f"/{dataset_from_data_dir}"
|
422 |
+
wandb_tags.append(f"dataset:{dataset_from_data_dir}")
|
423 |
+
|
424 |
train_output = Global.train_fn(
|
425 |
base_model, # base_model
|
426 |
tokenizer, # tokenizer
|
|
|
443 |
save_steps, # save_steps
|
444 |
save_total_limit, # save_total_limit
|
445 |
logging_steps, # logging_steps
|
446 |
+
training_callbacks, # callbacks
|
447 |
+
Global.wandb_api_key, # wandb_api_key
|
448 |
+
Global.default_wandb_project if Global.enable_wandb else None, # wandb_project
|
449 |
+
wandb_group, # wandb_group
|
450 |
+
model_name, # wandb_run_name
|
451 |
+
wandb_tags # wandb_tags
|
452 |
)
|
453 |
|
454 |
logs_str = "\n".join([json.dumps(log)
|
llama_lora/ui/inference_ui.py
CHANGED
@@ -8,12 +8,12 @@ from transformers import GenerationConfig
|
|
8 |
|
9 |
from ..globals import Global
|
10 |
from ..models import get_model, get_tokenizer, get_device
|
|
|
11 |
from ..utils.data import (
|
12 |
get_available_template_names,
|
13 |
get_available_lora_model_names,
|
14 |
get_info_of_available_lora_model)
|
15 |
from ..utils.prompter import Prompter
|
16 |
-
from ..utils.callbacks import Iteratorize, Stream
|
17 |
|
18 |
device = get_device()
|
19 |
|
@@ -103,8 +103,6 @@ def do_inference(
|
|
103 |
tokenizer = get_tokenizer(base_model_name)
|
104 |
model = get_model(base_model_name, lora_model_name)
|
105 |
|
106 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
107 |
-
input_ids = inputs["input_ids"].to(device)
|
108 |
generation_config = GenerationConfig(
|
109 |
temperature=temperature,
|
110 |
top_p=top_p,
|
@@ -113,26 +111,56 @@ def do_inference(
|
|
113 |
num_beams=num_beams,
|
114 |
)
|
115 |
|
116 |
-
generate_params = {
|
117 |
-
"input_ids": input_ids,
|
118 |
-
"generation_config": generation_config,
|
119 |
-
"return_dict_in_generate": True,
|
120 |
-
"output_scores": True,
|
121 |
-
"max_new_tokens": max_new_tokens,
|
122 |
-
}
|
123 |
-
|
124 |
def ui_generation_stopping_criteria(input_ids, score, **kwargs):
|
125 |
if Global.should_stop_generating:
|
126 |
return True
|
127 |
return False
|
128 |
|
129 |
Global.should_stop_generating = False
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
if stream_output:
|
138 |
# Stream the reply 1 token at a time.
|
|
|
8 |
|
9 |
from ..globals import Global
|
10 |
from ..models import get_model, get_tokenizer, get_device
|
11 |
+
from ..lib.inference import generate
|
12 |
from ..utils.data import (
|
13 |
get_available_template_names,
|
14 |
get_available_lora_model_names,
|
15 |
get_info_of_available_lora_model)
|
16 |
from ..utils.prompter import Prompter
|
|
|
17 |
|
18 |
device = get_device()
|
19 |
|
|
|
103 |
tokenizer = get_tokenizer(base_model_name)
|
104 |
model = get_model(base_model_name, lora_model_name)
|
105 |
|
|
|
|
|
106 |
generation_config = GenerationConfig(
|
107 |
temperature=temperature,
|
108 |
top_p=top_p,
|
|
|
111 |
num_beams=num_beams,
|
112 |
)
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def ui_generation_stopping_criteria(input_ids, score, **kwargs):
|
115 |
if Global.should_stop_generating:
|
116 |
return True
|
117 |
return False
|
118 |
|
119 |
Global.should_stop_generating = False
|
120 |
+
|
121 |
+
generation_args = {
|
122 |
+
'model': model,
|
123 |
+
'tokenizer': tokenizer,
|
124 |
+
'prompt': prompt,
|
125 |
+
'generation_config': generation_config,
|
126 |
+
'max_new_tokens': max_new_tokens,
|
127 |
+
'stopping_criteria': [ui_generation_stopping_criteria],
|
128 |
+
'stream_output': stream_output
|
129 |
+
}
|
130 |
+
|
131 |
+
for (decoded_output, output) in generate(**generation_args):
|
132 |
+
raw_output_str = None
|
133 |
+
if show_raw:
|
134 |
+
raw_output_str = str(output)
|
135 |
+
response = prompter.get_response(decoded_output)
|
136 |
+
|
137 |
+
if Global.should_stop_generating:
|
138 |
+
return
|
139 |
+
|
140 |
+
yield (
|
141 |
+
gr.Textbox.update(
|
142 |
+
value=response, lines=inference_output_lines),
|
143 |
+
raw_output_str)
|
144 |
+
|
145 |
+
if Global.should_stop_generating:
|
146 |
+
# If the user stops the generation, and then clicks the
|
147 |
+
# generation button again, they may mysteriously landed
|
148 |
+
# here, in the previous, should-be-stopped generation
|
149 |
+
# function call, with the new generation function not be
|
150 |
+
# called at all. To workaround this, we yield a message
|
151 |
+
# and setting lines=1, and if the front-end JS detects
|
152 |
+
# that lines has been set to 1 (rows="1" in HTML),
|
153 |
+
# it will automatically click the generate button again
|
154 |
+
# (gr.Textbox.update() does not support updating
|
155 |
+
# elem_classes or elem_id).
|
156 |
+
# [WORKAROUND-UI01]
|
157 |
+
yield (
|
158 |
+
gr.Textbox.update(
|
159 |
+
value="Please retry", lines=1),
|
160 |
+
None)
|
161 |
+
|
162 |
+
return
|
163 |
+
|
164 |
|
165 |
if stream_output:
|
166 |
# Stream the reply 1 token at a time.
|
llama_lora/utils/data.py
CHANGED
@@ -30,7 +30,7 @@ def copy_sample_data_if_not_exists(source, destination):
|
|
30 |
def get_available_template_names():
|
31 |
templates_directory_path = os.path.join(Global.data_dir, "templates")
|
32 |
all_files = os.listdir(templates_directory_path)
|
33 |
-
return [
|
34 |
|
35 |
|
36 |
def get_available_dataset_names():
|
|
|
30 |
def get_available_template_names():
|
31 |
templates_directory_path = os.path.join(Global.data_dir, "templates")
|
32 |
all_files = os.listdir(templates_directory_path)
|
33 |
+
return [filename.rstrip(".json") for filename in all_files if fnmatch.fnmatch(filename, "*.json") or fnmatch.fnmatch(filename, "*.py")]
|
34 |
|
35 |
|
36 |
def get_available_dataset_names():
|
llama_lora/utils/prompter.py
CHANGED
@@ -5,13 +5,15 @@ From https://github.com/tloen/alpaca-lora/blob/main/utils/prompter.py
|
|
5 |
|
6 |
import json
|
7 |
import os.path as osp
|
|
|
|
|
8 |
from typing import Union, List
|
9 |
|
10 |
from ..globals import Global
|
11 |
|
12 |
|
13 |
class Prompter(object):
|
14 |
-
__slots__ = ("template_name", "template", "_verbose")
|
15 |
|
16 |
def __init__(self, template_name: str = "", verbose: bool = False):
|
17 |
self._verbose = verbose
|
@@ -21,12 +23,41 @@ class Prompter(object):
|
|
21 |
self.template_name = "None"
|
22 |
return
|
23 |
self.template_name = template_name
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
self.template = json.load(fp)
|
31 |
if self._verbose:
|
32 |
print(
|
@@ -47,23 +78,31 @@ class Prompter(object):
|
|
47 |
res = variables.get("prompt", "")
|
48 |
elif "variables" in self.template:
|
49 |
variable_names = self.template.get("variables")
|
50 |
-
if
|
51 |
-
variables
|
52 |
-
|
53 |
-
|
54 |
-
raise ValueError(
|
55 |
-
f"The template {self.template_name} has \"variables\" defined but does not has a default prompt defined. Please do it like: '\"default\": \"prompt_with_instruction\"' to handle cases when a matching prompt can't be found.")
|
56 |
-
default_prompt_name = self.template.get("default")
|
57 |
-
if default_prompt_name not in self.template:
|
58 |
-
raise ValueError(
|
59 |
-
f"The template {self.template_name} has \"default\" set to \"{default_prompt_name}\" but it's not defined. Please do it like: '\"{default_prompt_name}\": \"...\".")
|
60 |
-
prompt_name = get_prompt_name(variables, variable_names)
|
61 |
-
prompt_template = self.template.get(default_prompt_name)
|
62 |
-
if prompt_name in self.template:
|
63 |
-
prompt_template = self.template.get(prompt_name)
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
else:
|
69 |
if type(variables) == dict:
|
@@ -104,6 +143,30 @@ class Prompter(object):
|
|
104 |
else:
|
105 |
return ["instruction", "input"]
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def get_val(arr, index, default=None):
|
109 |
return arr[index] if -len(arr) <= index < len(arr) else default
|
@@ -117,3 +180,57 @@ def get_prompt_name(variables, variable_names):
|
|
117 |
|
118 |
def variables_to_dict(variables, variable_names):
|
119 |
return {key: (variables[i] if i < len(variables) and variables[i] is not None else '') for i, key in enumerate(variable_names)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
import json
|
7 |
import os.path as osp
|
8 |
+
import importlib
|
9 |
+
import itertools
|
10 |
from typing import Union, List
|
11 |
|
12 |
from ..globals import Global
|
13 |
|
14 |
|
15 |
class Prompter(object):
|
16 |
+
__slots__ = ("template_name", "template", "template_module", "_verbose")
|
17 |
|
18 |
def __init__(self, template_name: str = "", verbose: bool = False):
|
19 |
self._verbose = verbose
|
|
|
23 |
self.template_name = "None"
|
24 |
return
|
25 |
self.template_name = template_name
|
26 |
+
self.template_module = None
|
27 |
|
28 |
+
base_filename, ext = osp.splitext(template_name)
|
29 |
+
if ext == "":
|
30 |
+
filename = base_filename + ".json"
|
31 |
+
else:
|
32 |
+
filename = base_filename + ext
|
33 |
+
|
34 |
+
file_path = osp.join(Global.data_dir, "templates", filename)
|
35 |
+
|
36 |
+
if not osp.exists(file_path):
|
37 |
+
raise ValueError(f"Can't read {file_path}")
|
38 |
+
|
39 |
+
if ext == ".py":
|
40 |
+
template_module_spec = importlib.util.spec_from_file_location(
|
41 |
+
"template_module", file_path)
|
42 |
+
template_module = importlib.util.module_from_spec(
|
43 |
+
template_module_spec)
|
44 |
+
template_module_spec.loader.exec_module(template_module)
|
45 |
+
self.template_module = template_module
|
46 |
+
|
47 |
+
if not hasattr(template_module, "variables"):
|
48 |
+
raise ValueError(
|
49 |
+
"The template module does not have a \"variables\" attribute.")
|
50 |
+
|
51 |
+
self.template = {
|
52 |
+
'variables': template_module.variables
|
53 |
+
}
|
54 |
+
|
55 |
+
if hasattr(template_module, "response_split"):
|
56 |
+
self.template["response_split"] = template_module.response_split
|
57 |
+
|
58 |
+
return
|
59 |
+
|
60 |
+
with open(file_path) as fp:
|
61 |
self.template = json.load(fp)
|
62 |
if self._verbose:
|
63 |
print(
|
|
|
78 |
res = variables.get("prompt", "")
|
79 |
elif "variables" in self.template:
|
80 |
variable_names = self.template.get("variables")
|
81 |
+
if self.template_module:
|
82 |
+
if type(variables) == list:
|
83 |
+
variables = {k: v for k, v in zip(
|
84 |
+
variable_names, variables)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
res = self.template_module.get_prompt(variables)
|
87 |
+
else:
|
88 |
+
if type(variables) == dict:
|
89 |
+
variables = [variables.get(name, None)
|
90 |
+
for name in variable_names]
|
91 |
+
|
92 |
+
if "default" not in self.template:
|
93 |
+
raise ValueError(
|
94 |
+
f"The template {self.template_name} has \"variables\" defined but does not has a default prompt defined. Please do it like: '\"default\": \"prompt_with_instruction\"' to handle cases when a matching prompt can't be found.")
|
95 |
+
default_prompt_name = self.template.get("default")
|
96 |
+
if default_prompt_name not in self.template:
|
97 |
+
raise ValueError(
|
98 |
+
f"The template {self.template_name} has \"default\" set to \"{default_prompt_name}\" but it's not defined. Please do it like: '\"{default_prompt_name}\": \"...\".")
|
99 |
+
prompt_name = get_prompt_name(variables, variable_names)
|
100 |
+
prompt_template = self.template.get(default_prompt_name)
|
101 |
+
if prompt_name in self.template:
|
102 |
+
prompt_template = self.template.get(prompt_name)
|
103 |
+
|
104 |
+
res = prompt_template.format(
|
105 |
+
**variables_to_dict(variables, variable_names))
|
106 |
|
107 |
else:
|
108 |
if type(variables) == dict:
|
|
|
143 |
else:
|
144 |
return ["instruction", "input"]
|
145 |
|
146 |
+
def get_train_data_from_dataset(self, data, only_first_n_items=None):
|
147 |
+
if self.template_module:
|
148 |
+
if hasattr(self.template_module, "get_train_data_list_from_dataset"):
|
149 |
+
data = self.template_module.get_train_data_list_from_dataset(
|
150 |
+
data)
|
151 |
+
if only_first_n_items:
|
152 |
+
data = data[:only_first_n_items]
|
153 |
+
return list(itertools.chain(*list(map(self.template_module.get_train_data, data))))
|
154 |
+
|
155 |
+
if only_first_n_items:
|
156 |
+
data = data[:only_first_n_items]
|
157 |
+
|
158 |
+
data = process_json_dataset(data)
|
159 |
+
|
160 |
+
train_data = [
|
161 |
+
{
|
162 |
+
'prompt': self.generate_prompt(d['variables']),
|
163 |
+
'completion': d['output'],
|
164 |
+
**{"_var_" + k: v for k, v in d['variables'].items()}
|
165 |
+
}
|
166 |
+
for d in data]
|
167 |
+
|
168 |
+
return train_data
|
169 |
+
|
170 |
|
171 |
def get_val(arr, index, default=None):
|
172 |
return arr[index] if -len(arr) <= index < len(arr) else default
|
|
|
180 |
|
181 |
def variables_to_dict(variables, variable_names):
|
182 |
return {key: (variables[i] if i < len(variables) and variables[i] is not None else '') for i, key in enumerate(variable_names)}
|
183 |
+
|
184 |
+
|
185 |
+
def process_json_dataset(data):
|
186 |
+
if not isinstance(data, list):
|
187 |
+
raise ValueError("The dataset is not an array of objects.")
|
188 |
+
|
189 |
+
first_item = get_val_from_arr(data, 0, None)
|
190 |
+
|
191 |
+
if first_item is None:
|
192 |
+
raise ValueError("The dataset is empty.")
|
193 |
+
if not isinstance(first_item, dict):
|
194 |
+
raise ValueError("The dataset is not an array of objects.")
|
195 |
+
|
196 |
+
# Convert OpenAI fine-tuning dataset to LLaMA LoRA style
|
197 |
+
if "completion" in first_item and "output" not in first_item:
|
198 |
+
data = [
|
199 |
+
{"output" if k == "completion" else k: v for k, v in d.items()}
|
200 |
+
for d in data]
|
201 |
+
first_item = get_val_from_arr(data, 0, None)
|
202 |
+
|
203 |
+
# Flatten Stanford Alpaca style instances
|
204 |
+
if "instances" in first_item and isinstance(first_item["instances"], list):
|
205 |
+
data = [
|
206 |
+
{"output" if k == "completion" else k: v for k, v in d.items()}
|
207 |
+
for d in data]
|
208 |
+
flattened_data = []
|
209 |
+
for item in data:
|
210 |
+
for instance in item["instances"]:
|
211 |
+
d = {k: v for k, v in item.items() if k != "instances"}
|
212 |
+
d.update(instance)
|
213 |
+
flattened_data.append(d)
|
214 |
+
data = flattened_data
|
215 |
+
first_item = get_val_from_arr(data, 0, None)
|
216 |
+
|
217 |
+
if "output" not in first_item:
|
218 |
+
raise ValueError(
|
219 |
+
"The data does not contains an \"output\" or \"completion\".")
|
220 |
+
|
221 |
+
# Put all variables under the "variables" key if it does not exists
|
222 |
+
if "variables" not in first_item:
|
223 |
+
data = [
|
224 |
+
{
|
225 |
+
"variables":
|
226 |
+
{k: v for k, v in d.items() if k != "output"},
|
227 |
+
"output":
|
228 |
+
d["output"]
|
229 |
+
}
|
230 |
+
for d in data
|
231 |
+
]
|
232 |
+
return data
|
233 |
+
|
234 |
+
|
235 |
+
def get_val_from_arr(arr, index, default=None):
|
236 |
+
return arr[index] if -len(arr) <= index < len(arr) else default
|