import os import sys import gc import torch import transformers from peft import PeftModel from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer from .globals import Global def get_device(): if torch.cuda.is_available(): return "cuda" else: return "cpu" try: if torch.backends.mps.is_available(): return "mps" except: # noqa: E722 pass device = get_device() def get_base_model(): load_base_model() return Global.loaded_base_model def get_model_with_lora(lora_weights: str = "tloen/alpaca-lora-7b"): Global.model_has_been_used = True if device == "cuda": model = PeftModel.from_pretrained( get_base_model(), lora_weights, torch_dtype=torch.float16, device_map={'': 0}, # ? https://github.com/tloen/alpaca-lora/issues/21 ) elif device == "mps": model = PeftModel.from_pretrained( get_base_model(), lora_weights, device_map={"": device}, torch_dtype=torch.float16, ) else: model = PeftModel.from_pretrained( get_base_model(), lora_weights, device_map={"": device}, ) model.config.pad_token_id = get_tokenizer().pad_token_id = 0 model.config.bos_token_id = 1 model.config.eos_token_id = 2 if not Global.load_8bit: model.half() # seems to fix bugs for some users. model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) return model def get_tokenizer(): load_base_model() return Global.loaded_tokenizer def load_base_model(): if Global.ui_dev_mode: return if Global.loaded_tokenizer is None: Global.loaded_tokenizer = LlamaTokenizer.from_pretrained( Global.base_model ) if Global.loaded_base_model is None: if device == "cuda": Global.loaded_base_model = LlamaForCausalLM.from_pretrained( Global.base_model, load_in_8bit=Global.load_8bit, torch_dtype=torch.float16, # device_map="auto", device_map={'': 0}, # ? https://github.com/tloen/alpaca-lora/issues/21 ) elif device == "mps": Global.loaded_base_model = LlamaForCausalLM.from_pretrained( Global.base_model, device_map={"": device}, torch_dtype=torch.float16, ) else: Global.loaded_base_model = LlamaForCausalLM.from_pretrained( base_model, device_map={"": device}, low_cpu_mem_usage=True ) def clear_cache(): gc.collect() # if not shared.args.cpu: # will not be running on CPUs anyway with torch.no_grad(): torch.cuda.empty_cache() def unload_models(): del Global.loaded_base_model Global.loaded_base_model = None del Global.loaded_tokenizer Global.loaded_tokenizer = None clear_cache() Global.model_has_been_used = False def unload_models_if_already_used(): if Global.model_has_been_used: unload_models()