File size: 20,320 Bytes
7e8c559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
# Modified by Feng Liang from
# https://github.com/MendelXu/zsseg.baseline/blob/master/mask_former/zero_shot_mask_former_model.py

import logging
from typing import Tuple

import numpy as np
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import ImageList
from detectron2.utils.logger import log_first_n
from .modeling.clip_adapter import (
    ClipAdapter,
    MaskFormerClipAdapter,
    build_text_prompt,
)
from .mask_former_model import MaskFormer
from .utils.misc import get_gt_binary_masks

@META_ARCH_REGISTRY.register()
class OVSeg(MaskFormer):
    """
    Main class for zero shot mask classification semantic segmentation architectures.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        clip_adapter: nn.Module,
        criterion: nn.Module,
        num_queries: int,
        panoptic_on: bool,
        object_mask_threshold: float,
        overlap_threshold: float,
        metadata,
        size_divisibility: int,
        sem_seg_postprocess_before_inference: bool,
        clip_ensemble: bool,
        clip_ensemble_weight: float,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
            criterion: a module that defines the loss
            clip_adapter: adapter for clip-based mask classification
            num_queries: int, number of queries
            panoptic_on: bool, whether to output panoptic segmentation prediction
            object_mask_threshold: float, threshold to filter query based on classification score
                for panoptic segmentation inference
            overlap_threshold: overlap threshold used in general inference for panoptic segmentation
            metadata: dataset meta, get `thing` and `stuff` category names for panoptic
                segmentation inference
            size_divisibility: Some backbones require the input height and width to be divisible by a
                specific integer. We can use this to override such requirement.
            sem_seg_postprocess_before_inference: whether to resize the prediction back
                to original input size before semantic segmentation inference or after.
                For high-resolution dataset like Mapillary, resizing predictions before
                inference will cause OOM error.
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
        """
        super().__init__(
            backbone=backbone,
            sem_seg_head=sem_seg_head,
            criterion=criterion,
            num_queries=num_queries,
            panoptic_on=panoptic_on,
            object_mask_threshold=object_mask_threshold,
            overlap_threshold=overlap_threshold,
            metadata=metadata,
            size_divisibility=size_divisibility,
            sem_seg_postprocess_before_inference=sem_seg_postprocess_before_inference,
            pixel_mean=pixel_mean,
            pixel_std=pixel_std,
        )
        self.clip_adapter: ClipAdapter = clip_adapter

        self.clip_ensemble: bool = clip_ensemble
        self.clip_ensemble_weight: float = clip_ensemble_weight

    @classmethod
    def from_config(cls, cfg):
        init_kwargs = MaskFormer.from_config(cfg)
        text_templates = build_text_prompt(cfg.MODEL.CLIP_ADAPTER)

        clip_adapter = MaskFormerClipAdapter(
            cfg.MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME,
            text_templates,
            mask_fill=cfg.MODEL.CLIP_ADAPTER.MASK_FILL,
            mask_expand_ratio=cfg.MODEL.CLIP_ADAPTER.MASK_EXPAND_RATIO,
            mask_thr=cfg.MODEL.CLIP_ADAPTER.MASK_THR,
            mask_matting=cfg.MODEL.CLIP_ADAPTER.MASK_MATTING,
            region_resized=cfg.MODEL.CLIP_ADAPTER.REGION_RESIZED,
            mask_prompt_depth=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_DEPTH,
            mask_prompt_fwd=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD,
        )
        init_kwargs["clip_adapter"] = clip_adapter
        init_kwargs["clip_ensemble"] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE
        init_kwargs[
            "clip_ensemble_weight"
        ] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT

        return init_kwargs

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
                * "panoptic_seg":
                    A tuple that represent panoptic output
                    panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
                    segments_info (list[dict]): Describe each segment in `panoptic_seg`.
                        Each dict contains keys "id", "category_id", "isthing".
        """
        dataset_name = [x["meta"]["dataset_name"] for x in batched_inputs]
        assert len(set(dataset_name)) == 1
        dataset_name = dataset_name[0]

        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features)
        class_names = self.get_class_name_list(dataset_name)
        text_features = self.clip_adapter.get_text_features(class_names)
        outputs["pred_logits"] = self.clip_adapter.get_sim_logits(
            text_features, self.clip_adapter.normalize_feature(outputs["pred_logits"])
        )
        if self.training:
            if "aux_outputs" in outputs.keys():
                for i in range(len(outputs["aux_outputs"])):
                    outputs["aux_outputs"][i][
                        "pred_logits"
                    ] = self.clip_adapter.get_sim_logits(
                        text_features,
                        self.clip_adapter.normalize_feature(
                            outputs["aux_outputs"][i]["pred_logits"]
                        ),
                    )
            # mask classification target
            if "instances" in batched_inputs[0]:
                gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
                targets = self.prepare_targets(gt_instances, images)
            else:
                targets = None

            # bipartite matching-based loss
            losses = self.criterion(outputs, targets)

            for k in list(losses.keys()):
                if k in self.criterion.weight_dict:
                    losses[k] *= self.criterion.weight_dict[k]
                else:
                    # remove this loss if not specified in `weight_dict`
                    losses.pop(k)

            return losses
        else:
            mask_cls_results = outputs["pred_logits"]
            mask_pred_results = outputs["pred_masks"]
            # upsample masks
            mask_pred_results = F.interpolate(
                mask_pred_results,
                size=(images.tensor.shape[-2], images.tensor.shape[-1]),
                mode="bilinear",
                align_corners=False,
            )

            processed_results = []
            for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
                mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
            ):
                height = image_size[0]
                width = image_size[1]
                mask_pred_result = sem_seg_postprocess(
                    mask_pred_result, image_size, height, width
                )
                image = input_per_image["image"].to(self.device)

                r, regions = self.semantic_inference(
                    mask_cls_result, mask_pred_result, image, class_names
                )

                height = input_per_image.get("height", image_size[0])
                width = input_per_image.get("width", image_size[1])
                r = sem_seg_postprocess(r, image_size, height, width)
                processed_results.append({"sem_seg": r})

                # panoptic segmentation inference
                if self.panoptic_on:
                    panoptic_r = self.panoptic_inference(
                        mask_cls_result, mask_pred_result
                    )
                    processed_results[-1]["panoptic_seg"] = panoptic_r

            return processed_results


    def semantic_inference(self, mask_cls, mask_pred, image, class_names):
        mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
        mask_pred = mask_pred.sigmoid()

        regions = None
        if self.clip_ensemble:
            clip_cls, regions, valid_flag = self.clip_adapter(
                image, class_names, mask_pred, normalize=True
            )
            if clip_cls is None:
                clip_cls = torch.empty(0, mask_cls.shape[-1] + 1, device=self.device)
            # softmax before index or after?
            clip_cls = F.softmax(clip_cls[:, :-1], dim=-1)
            if self.clip_ensemble_weight > 0:
                map_back_clip_cls = mask_cls.new_ones(mask_cls.shape)
                map_back_clip_cls[valid_flag] = clip_cls
                mask_cls = torch.pow(mask_cls, 1 - self.clip_ensemble_weight) * \
                           torch.pow(map_back_clip_cls, self.clip_ensemble_weight)


            else:
                # only clip model predictions are used
                mask_cls = clip_cls
                mask_pred = mask_pred[valid_flag]
        semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
        return semseg, regions

    def get_class_name_list(self, dataset_name):
        class_names = [
            c.strip() for c in MetadataCatalog.get(dataset_name).stuff_classes
        ]
        return class_names


@META_ARCH_REGISTRY.register()
class OVSegDEMO(MaskFormer):
    """
    Main class for zero shot mask classification semantic segmentation architectures.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        clip_adapter: nn.Module,
        criterion: nn.Module,
        num_queries: int,
        panoptic_on: bool,
        object_mask_threshold: float,
        overlap_threshold: float,
        metadata,
        size_divisibility: int,
        sem_seg_postprocess_before_inference: bool,
        clip_ensemble: bool,
        clip_ensemble_weight: float,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
            criterion: a module that defines the loss
            clip_adapter: adapter for clip-based mask classification
            num_queries: int, number of queries
            panoptic_on: bool, whether to output panoptic segmentation prediction
            object_mask_threshold: float, threshold to filter query based on classification score
                for panoptic segmentation inference
            overlap_threshold: overlap threshold used in general inference for panoptic segmentation
            metadata: dataset meta, get `thing` and `stuff` category names for panoptic
                segmentation inference
            size_divisibility: Some backbones require the input height and width to be divisible by a
                specific integer. We can use this to override such requirement.
            sem_seg_postprocess_before_inference: whether to resize the prediction back
                to original input size before semantic segmentation inference or after.
                For high-resolution dataset like Mapillary, resizing predictions before
                inference will cause OOM error.
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
        """
        super().__init__(
            backbone=backbone,
            sem_seg_head=sem_seg_head,
            criterion=criterion,
            num_queries=num_queries,
            panoptic_on=panoptic_on,
            object_mask_threshold=object_mask_threshold,
            overlap_threshold=overlap_threshold,
            metadata=metadata,
            size_divisibility=size_divisibility,
            sem_seg_postprocess_before_inference=sem_seg_postprocess_before_inference,
            pixel_mean=pixel_mean,
            pixel_std=pixel_std,
        )
        self.clip_adapter: ClipAdapter = clip_adapter

        self.clip_ensemble: bool = clip_ensemble
        self.clip_ensemble_weight: float = clip_ensemble_weight

    @classmethod
    def from_config(cls, cfg):
        init_kwargs = MaskFormer.from_config(cfg)
        text_templates = build_text_prompt(cfg.MODEL.CLIP_ADAPTER)

        clip_adapter = MaskFormerClipAdapter(
            cfg.MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME,
            text_templates,
            mask_fill=cfg.MODEL.CLIP_ADAPTER.MASK_FILL,
            mask_expand_ratio=cfg.MODEL.CLIP_ADAPTER.MASK_EXPAND_RATIO,
            mask_thr=cfg.MODEL.CLIP_ADAPTER.MASK_THR,
            mask_matting=cfg.MODEL.CLIP_ADAPTER.MASK_MATTING,
            region_resized=cfg.MODEL.CLIP_ADAPTER.REGION_RESIZED,
            mask_prompt_depth=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_DEPTH,
            mask_prompt_fwd=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD,
        )
        init_kwargs["clip_adapter"] = clip_adapter
        init_kwargs["clip_ensemble"] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE
        init_kwargs[
            "clip_ensemble_weight"
        ] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT

        return init_kwargs

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
                * "panoptic_seg":
                    A tuple that represent panoptic output
                    panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
                    segments_info (list[dict]): Describe each segment in `panoptic_seg`.
                        Each dict contains keys "id", "category_id", "isthing".
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features)
        class_names = batched_inputs[0]["class_names"]
        if len(class_names) == 1:
            # Because classification is performed in a 'contrastive' manner, adding others to represent other concepts
            class_names.append('others')
        text_features = self.clip_adapter.get_text_features(class_names)
        outputs["pred_logits"] = self.clip_adapter.get_sim_logits(
            text_features, self.clip_adapter.normalize_feature(outputs["pred_logits"])
        )
        mask_cls_results = outputs["pred_logits"]
        mask_pred_results = outputs["pred_masks"]
        # upsample masks
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(images.tensor.shape[-2], images.tensor.shape[-1]),
            mode="bilinear",
            align_corners=False,
        )

        processed_results = []
        for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
            mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
        ):
            height = image_size[0]
            width = image_size[1]
            mask_pred_result = sem_seg_postprocess(
                mask_pred_result, image_size, height, width
            )
            image = input_per_image["image"].to(self.device)

            r, regions = self.demo_inference(mask_cls_result, mask_pred_result, image, class_names)

            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            r = sem_seg_postprocess(r, image_size, height, width)
            processed_results.append({"sem_seg": r})

        return processed_results




    def demo_inference(self, mask_cls, mask_pred, image, class_names):
        mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
        mask_pred = mask_pred.sigmoid()

        regions = None
        if self.clip_ensemble:
            clip_cls, regions, valid_flag = self.clip_adapter(
                image, class_names, mask_pred, normalize=True
            )
            if clip_cls is None:
                clip_cls = torch.empty(0, mask_cls.shape[-1] + 1, device=self.device)
            # softmax before index or after?
            clip_cls = F.softmax(clip_cls[:, :-1], dim=-1)
            if self.clip_ensemble_weight > 0:
                map_back_clip_cls = mask_cls.new_ones(mask_cls.shape)
                map_back_clip_cls[valid_flag] = clip_cls
                mask_cls = torch.pow(mask_cls, 1 - self.clip_ensemble_weight) * \
                           torch.pow(map_back_clip_cls, self.clip_ensemble_weight)

            else:
                # only clip model predictions are used
                mask_cls = clip_cls
                mask_pred = mask_pred[valid_flag]
        bin_mask = mask_pred > self.clip_adapter.mask_thr
        select_cls = torch.zeros(sum(valid_flag), mask_cls.shape[-1], device=self.device)
        select_mask = torch.argmax(mask_cls, dim=0)
        if len(class_names) == 2 and class_names[-1] == 'others':
            select_mask = select_mask[:-1]
        for idx in select_mask:
            select_cls[idx] = mask_cls[idx]
        semseg = torch.einsum("qc,qhw->chw", select_cls, bin_mask.float())
        return semseg, regions