File size: 4,249 Bytes
7e8c559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved

"""
Misc functions, including distributed helpers.

Mostly copy-paste from torchvision references.
"""
from typing import List, Optional

import torch
import torch.distributed as dist
import torchvision
from torch import Tensor


def _max_by_axis(the_list):
    # type: (List[List[int]]) -> List[int]
    maxes = the_list[0]
    for sublist in the_list[1:]:
        for index, item in enumerate(sublist):
            maxes[index] = max(maxes[index], item)
    return maxes


class NestedTensor(object):
    def __init__(self, tensors, mask: Optional[Tensor]):
        self.tensors = tensors
        self.mask = mask

    def to(self, device):
        # type: (Device) -> NestedTensor # noqa
        cast_tensor = self.tensors.to(device)
        mask = self.mask
        if mask is not None:
            assert mask is not None
            cast_mask = mask.to(device)
        else:
            cast_mask = None
        return NestedTensor(cast_tensor, cast_mask)

    def decompose(self):
        return self.tensors, self.mask

    def __repr__(self):
        return str(self.tensors)


def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
    # TODO make this more general
    if tensor_list[0].ndim == 3:
        if torchvision._is_tracing():
            # nested_tensor_from_tensor_list() does not export well to ONNX
            # call _onnx_nested_tensor_from_tensor_list() instead
            return _onnx_nested_tensor_from_tensor_list(tensor_list)

        # TODO make it support different-sized images
        max_size = _max_by_axis([list(img.shape) for img in tensor_list])
        # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
        batch_shape = [len(tensor_list)] + max_size
        b, c, h, w = batch_shape
        dtype = tensor_list[0].dtype
        device = tensor_list[0].device
        tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
        mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
        for img, pad_img, m in zip(tensor_list, tensor, mask):
            pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
            m[: img.shape[1], : img.shape[2]] = False
    else:
        raise ValueError("not supported")
    return NestedTensor(tensor, mask)


# _onnx_nested_tensor_from_tensor_list() is an implementation of
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
    max_size = []
    for i in range(tensor_list[0].dim()):
        max_size_i = torch.max(
            torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
        ).to(torch.int64)
        max_size.append(max_size_i)
    max_size = tuple(max_size)

    # work around for
    # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
    # m[: img.shape[1], :img.shape[2]] = False
    # which is not yet supported in onnx
    padded_imgs = []
    padded_masks = []
    for img in tensor_list:
        padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
        padded_img = torch.nn.functional.pad(
            img, (0, padding[2], 0, padding[1], 0, padding[0])
        )
        padded_imgs.append(padded_img)

        m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
        padded_mask = torch.nn.functional.pad(
            m, (0, padding[2], 0, padding[1]), "constant", 1
        )
        padded_masks.append(padded_mask.to(torch.bool))

    tensor = torch.stack(padded_imgs)
    mask = torch.stack(padded_masks)

    return NestedTensor(tensor, mask=mask)


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True

def get_gt_binary_masks(gt_semseg):
    mask_ids = torch.unique(gt_semseg)
    gt_masks = []
    for id in mask_ids:
        if id != 255:
            gt_masks.append(gt_semseg == id)
    gt_masks = torch.stack(gt_masks).float()
    return gt_masks