Spaces:
Sleeping
Sleeping
File size: 3,619 Bytes
01e655b 84cfd61 d5b3cd8 84cfd61 01e655b ae79826 01e655b d5b3cd8 01e655b 1df74c6 01e655b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import sys
from pydub import AudioSegment
import soundfile as sf
import pyrubberband as pyrb
import numpy as np
from io import BytesIO
INT16_MAX = np.iinfo(np.int16).max
def audio_to_int16(audio_data):
if (
audio_data.dtype == np.float32
or audio_data.dtype == np.float64
or audio_data.dtype == np.float128
or audio_data.dtype == np.float16
):
audio_data = (audio_data * INT16_MAX).astype(np.int16)
return audio_data
def audiosegment_to_librosawav(audiosegment: AudioSegment) -> np.ndarray:
"""
Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels],
where each value is in range [-1.0, 1.0].
"""
channel_sounds = audiosegment.split_to_mono()
samples = [s.get_array_of_samples() for s in channel_sounds]
fp_arr = np.array(samples).T.astype(np.float32)
fp_arr /= np.iinfo(samples[0].typecode).max
fp_arr = fp_arr.reshape(-1)
return fp_arr
def pydub_to_np(audio: AudioSegment) -> tuple[int, np.ndarray]:
"""
Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels],
where each value is in range [-1.0, 1.0].
Returns tuple (audio_np_array, sample_rate).
"""
return (
audio.frame_rate,
np.array(audio.get_array_of_samples(), dtype=np.float32).reshape(
(-1, audio.channels)
)
/ (1 << (8 * audio.sample_width - 1)),
)
def ndarray_to_segment(ndarray, frame_rate):
buffer = BytesIO()
sf.write(buffer, ndarray, frame_rate, format="wav")
buffer.seek(0)
sound = AudioSegment.from_wav(
buffer,
)
return sound
def time_stretch(input_segment: AudioSegment, time_factor: float) -> AudioSegment:
"""
factor range -> [0.2,10]
"""
time_factor = np.clip(time_factor, 0.2, 10)
sr = input_segment.frame_rate
y = audiosegment_to_librosawav(input_segment)
y_stretch = pyrb.time_stretch(y, sr, time_factor)
sound = ndarray_to_segment(
y_stretch,
frame_rate=sr,
)
return sound
def pitch_shift(
input_segment: AudioSegment,
pitch_shift_factor: float,
) -> AudioSegment:
"""
factor range -> [-12,12]
"""
pitch_shift_factor = np.clip(pitch_shift_factor, -12, 12)
sr = input_segment.frame_rate
y = audiosegment_to_librosawav(input_segment)
y_shift = pyrb.pitch_shift(y, sr, pitch_shift_factor)
sound = ndarray_to_segment(
y_shift,
frame_rate=sr,
)
return sound
def apply_prosody_to_audio_data(
audio_data: np.ndarray,
rate: float = 1,
volume: float = 0,
pitch: float = 0,
sr: int = 24000,
) -> np.ndarray:
if rate != 1:
audio_data = pyrb.time_stretch(audio_data, sr=sr, rate=rate)
if volume != 0:
audio_data = audio_data * volume
if pitch != 0:
audio_data = pyrb.pitch_shift(audio_data, sr=sr, n_steps=pitch)
return audio_data
if __name__ == "__main__":
input_file = sys.argv[1]
time_stretch_factors = [0.5, 0.75, 1.5, 1.0]
pitch_shift_factors = [-12, -5, 0, 5, 12]
input_sound = AudioSegment.from_mp3(input_file)
for time_factor in time_stretch_factors:
output_wav = f"time_stretched_{int(time_factor * 100)}.wav"
sound = time_stretch(input_sound, time_factor)
sound.export(output_wav, format="wav")
for pitch_factor in pitch_shift_factors:
output_wav = f"pitch_shifted_{int(pitch_factor * 100)}.wav"
sound = pitch_shift(input_sound, pitch_factor)
sound.export(output_wav, format="wav")
|