File size: 6,956 Bytes
01e655b
627d3d7
01e655b
 
 
 
 
 
 
627d3d7
 
 
 
01e655b
627d3d7
01e655b
 
 
 
c5458aa
01e655b
 
ebc4336
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02e90e4
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
627d3d7
01e655b
 
 
 
627d3d7
 
 
 
 
 
 
 
 
01e655b
 
 
627d3d7
 
01e655b
 
 
 
 
 
 
 
 
 
627d3d7
01e655b
 
ebc4336
 
01e655b
 
 
627d3d7
 
 
 
01e655b
627d3d7
c5458aa
 
627d3d7
01e655b
 
627d3d7
01e655b
 
 
ebc4336
 
c5458aa
627d3d7
c5458aa
 
 
 
627d3d7
c5458aa
 
627d3d7
 
 
 
01e655b
 
 
 
627d3d7
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
627d3d7
 
01e655b
 
 
 
ebc4336
 
01e655b
 
 
 
 
627d3d7
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627d3d7
 
 
 
 
 
 
 
 
 
 
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc4336
 
 
 
 
01e655b
 
 
02e90e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import base64
from typing import Literal
from fastapi import HTTPException

import io
import soundfile as sf
from pydantic import BaseModel


from modules.Enhancer.ResembleEnhance import (
    apply_audio_enhance,
    apply_audio_enhance_full,
)
from modules.api.Api import APIManager
from modules.synthesize_audio import synthesize_audio
from modules.utils.audio import apply_prosody_to_audio_data
from modules.normalization import text_normalize

from modules import generate_audio as generate
from modules.speaker import speaker_mgr


from modules.ssml_parser.SSMLParser import create_ssml_parser
from modules.SynthesizeSegments import (
    SynthesizeSegments,
    combine_audio_segments,
)

from modules.api import utils as api_utils


class SynthesisInput(BaseModel):
    text: str = ""
    ssml: str = ""


class VoiceSelectionParams(BaseModel):
    languageCode: str = "ZH-CN"

    name: str = "female2"
    style: str = ""
    temperature: float = 0.3
    topP: float = 0.7
    topK: int = 20
    seed: int = 42


class AudioConfig(BaseModel):
    audioEncoding: api_utils.AudioFormat = "mp3"
    speakingRate: float = 1
    pitch: float = 0
    volumeGainDb: float = 0
    sampleRateHertz: int = 24000
    batchSize: int = 1
    spliterThreshold: int = 100


class EnhancerConfig(BaseModel):
    enabled: bool = False
    model: str = "resemble-enhance"
    nfe: int = 32
    solver: Literal["midpoint", "rk4", "euler"] = "midpoint"
    lambd: float = 0.5
    tau: float = 0.5


class GoogleTextSynthesizeRequest(BaseModel):
    input: SynthesisInput
    voice: VoiceSelectionParams
    audioConfig: AudioConfig
    enhancerConfig: EnhancerConfig = None


class GoogleTextSynthesizeResponse(BaseModel):
    audioContent: str


async def google_text_synthesize(request: GoogleTextSynthesizeRequest):
    input = request.input
    voice = request.voice
    audioConfig = request.audioConfig
    enhancerConfig = request.enhancerConfig

    # 提取参数

    # TODO 这个也许应该传给 normalizer
    language_code = voice.languageCode
    voice_name = voice.name
    infer_seed = voice.seed or 42
    audio_format = audioConfig.audioEncoding or "mp3"
    speaking_rate = audioConfig.speakingRate or 1
    pitch = audioConfig.pitch or 0
    volume_gain_db = audioConfig.volumeGainDb or 0

    batch_size = audioConfig.batchSize or 1

    # TODO spliter_threshold
    spliter_threshold = audioConfig.spliterThreshold or 100

    # TODO sample_rate
    sample_rate_hertz = audioConfig.sampleRateHertz or 24000

    params = api_utils.calc_spk_style(spk=voice.name, style=voice.style)

    # 虽然 calc_spk_style 可以解析 seed 形式,但是这个接口只准备支持 speakers list 中存在的 speaker
    if speaker_mgr.get_speaker(voice_name) is None:
        raise HTTPException(
            status_code=422, detail="The specified voice name is not supported."
        )

    if audio_format != "mp3" and audio_format != "wav":
        raise HTTPException(
            status_code=422, detail="Invalid audio encoding format specified."
        )

    if enhancerConfig.enabled:
        # TODO enhancer params checker
        pass

    try:
        if input.text:
            # 处理文本合成逻辑
            text = text_normalize(input.text, is_end=True)
            sample_rate, audio_data = synthesize_audio(
                text,
                temperature=(
                    voice.temperature
                    if voice.temperature
                    else params.get("temperature", 0.3)
                ),
                top_P=voice.topP if voice.topP else params.get("top_p", 0.7),
                top_K=voice.topK if voice.topK else params.get("top_k", 20),
                spk=params.get("spk", -1),
                infer_seed=infer_seed,
                prompt1=params.get("prompt1", ""),
                prompt2=params.get("prompt2", ""),
                prefix=params.get("prefix", ""),
                batch_size=batch_size,
                spliter_threshold=spliter_threshold,
            )

        elif input.ssml:
            # 处理SSML合成逻辑
            parser = create_ssml_parser()
            segments = parser.parse(input.ssml)
            for seg in segments:
                seg["text"] = text_normalize(seg["text"], is_end=True)

            if len(segments) == 0:
                raise HTTPException(
                    status_code=422, detail="The SSML text is empty or parsing failed."
                )

            synthesize = SynthesizeSegments(batch_size=batch_size)
            audio_segments = synthesize.synthesize_segments(segments)
            combined_audio = combine_audio_segments(audio_segments)

            buffer = io.BytesIO()
            combined_audio.export(buffer, format="wav")

            buffer.seek(0)

            audio_data = buffer.read()

        else:
            raise HTTPException(
                status_code=422, detail="Either text or SSML input must be provided."
            )

        if enhancerConfig.enabled:
            audio_data, sample_rate = apply_audio_enhance_full(
                audio_data=audio_data,
                sr=sample_rate,
                nfe=enhancerConfig.nfe,
                solver=enhancerConfig.solver,
                lambd=enhancerConfig.lambd,
                tau=enhancerConfig.tau,
            )

        audio_data = apply_prosody_to_audio_data(
            audio_data,
            rate=speaking_rate,
            pitch=pitch,
            volume=volume_gain_db,
            sr=sample_rate,
        )

        buffer = io.BytesIO()
        sf.write(buffer, audio_data, sample_rate, format="wav")
        buffer.seek(0)

        if audio_format == "mp3":
            buffer = api_utils.wav_to_mp3(buffer)

        base64_encoded = base64.b64encode(buffer.read())
        base64_string = base64_encoded.decode("utf-8")

        return {
            "audioContent": f"data:audio/{audio_format.lower()};base64,{base64_string}"
        }

    except Exception as e:
        import logging

        logging.exception(e)

        if isinstance(e, HTTPException):
            raise e
        else:
            raise HTTPException(status_code=500, detail=str(e))


def setup(app: APIManager):
    app.post(
        "/v1/text:synthesize",
        response_model=GoogleTextSynthesizeResponse,
        description="""
google api document: <br/>
[https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize](https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize)

- 多个属性在本系统中无用仅仅是为了兼容google api
- voice 中的 topP, topK, temperature 为本系统中的参数
- voice.name 即 speaker name (或者speaker seed)
- voice.seed 为 infer seed (可在webui中测试具体作用)

- 编码格式影响的是 audioContent 的二进制格式,所以所有format都是返回带有base64数据的json
        """,
    )(google_text_synthesize)