File size: 10,562 Bytes
1df74c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
import torch.nn.functional as F
import transformers

from modules.finetune.model.encoder import DVAEEncoder, get_encoder_config
from modules.finetune.utils.output import get_ansi_len, output_iter, ansi
from .utils.logger import MetricLogger
from .utils.dataset import AudioCollator, XzListTar
from .utils.model import quantize

IGNORE_TOKEN_ID = transformers.trainer_pt_utils.LabelSmoother.ignore_index


def train_speaker_embeddings(
    chat,
    dataset,
    gpt,
    batch_size=16,
    epochs=10,
    train_text=True,
    speaker_embeds=None,
):
    tokenizer = chat.pretrain_models["tokenizer"]

    decoder_decoder = chat.pretrain_models["decoder"]
    decoder_decoder.eval().requires_grad_(False)
    decoder_encoder = DVAEEncoder(**get_encoder_config(decoder_decoder.decoder)).to(
        device=dataset.device
    )
    decoder_encoder.eval().requires_grad_(False)

    dvae_decoder = chat.pretrain_models["dvae"]
    dvae_decoder.eval().requires_grad_(False)
    dvae_encoder = DVAEEncoder(**get_encoder_config(dvae_decoder.decoder)).to(
        device=dataset.device
    )
    dvae_encoder.eval().requires_grad_(False)

    if speaker_embeds is None:
        speaker_embeds = {
            speaker: torch.randn(
                768,
                device=dataset.device,
                requires_grad=True,
            )
            for speaker in dataset.speakers
        }
        for speaker_embed in speaker_embeds.values():
            std, mean = chat.pretrain_models["spk_stat"].chunk(2)
            speaker_embed.data = speaker_embed.data * std + mean

    SPEAKER_TOKEN_ID = tokenizer.convert_tokens_to_ids("[spk_emb]")
    AUDIO_EOS_TOKEN_ID = 0
    AUDIO_PAD_TOKEN_ID = AUDIO_EOS_TOKEN_ID

    optimizer = torch.optim.Adam(
        speaker_embeds.values(), lr=1e-2, weight_decay=0, betas=[0.9, 0.95], eps=1e-5
    )
    loss_fn = torch.nn.CrossEntropyLoss()
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs, 1e-7)

    loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=True,
        collate_fn=AudioCollator(text_pad=tokenizer.pad_token_id),
    )
    logger = MetricLogger()
    logger.create_meters(loss=None, mse_loss=None, audio_loss=None, text_loss=None)

    for _epoch in range(epochs):
        _epoch += 1
        logger.reset()
        header = "{blue_light}{0}: {1}{reset}".format(
            "Epoch", output_iter(_epoch, epochs), **ansi
        )
        header = header.ljust(max(len("Epoch"), 30) + get_ansi_len(header))
        iterator = logger.log_every(loader, header=header, tqdm_header="Batch")

        for batch in iterator:
            speakers = batch["speaker"]
            text_input_ids = batch["text_input_ids"]
            text_attention_mask = batch["text_attention_mask"]
            audio_mel_specs = batch["audio_mel_specs"]
            audio_attention_mask = batch["audio_attention_mask"]

            batch_size, text_len = text_attention_mask.size()

            dvae_audio_latents = dvae_encoder(audio_mel_specs, audio_attention_mask)
            _, dvae_audio_input_ids = quantize(
                dvae_decoder.vq_layer.quantizer, dvae_audio_latents
            )
            dvae_audio_input_ids[~audio_attention_mask.bool()] = AUDIO_PAD_TOKEN_ID

            extended_audio_attention_mask = torch.cat(
                [
                    audio_attention_mask,
                    torch.zeros(
                        (batch_size, 1),
                        dtype=audio_attention_mask.dtype,
                        device=audio_attention_mask.device,
                    ),
                ],
                dim=1,
            )
            extended_audio_input_ids = torch.cat(
                [
                    dvae_audio_input_ids,
                    AUDIO_PAD_TOKEN_ID
                    * torch.ones(
                        (batch_size, 1, gpt.num_vq),
                        dtype=dvae_audio_input_ids.dtype,
                        device=dvae_audio_input_ids.device,
                    ),
                ],
                dim=1,
            )
            indices = audio_attention_mask.int().sum(dim=1)
            for i in range(batch_size):
                extended_audio_attention_mask[i, indices[i]] = 1
                extended_audio_input_ids[i, indices[i]] = AUDIO_EOS_TOKEN_ID

            input_ids = torch.cat(
                [
                    text_input_ids.unsqueeze(-1).repeat(1, 1, gpt.num_vq),
                    extended_audio_input_ids,
                ],
                dim=1,
            )
            attention_mask = torch.cat(
                [text_attention_mask, extended_audio_attention_mask], dim=1
            )
            text_mask = torch.cat(
                [
                    torch.ones_like(text_attention_mask, dtype=bool),
                    torch.zeros_like(extended_audio_attention_mask, dtype=bool),
                ],
                dim=1,
            )

            labels = input_ids.clone()
            labels[~attention_mask.bool()] = IGNORE_TOKEN_ID

            inputs_embeds = gpt.get_emb(input_ids=input_ids, text_mask=text_mask)

            indices = torch.all(input_ids == SPEAKER_TOKEN_ID, dim=-1)
            for i, speaker in enumerate(speakers):
                inputs_embeds[i, indices[i]] = F.normalize(
                    speaker_embeds[speaker].to(dtype=inputs_embeds.dtype),
                    p=2.0,
                    dim=-1,
                    eps=1e-12,
                ).unsqueeze(0)
            outputs = gpt.gpt.forward(
                inputs_embeds=inputs_embeds, attention_mask=attention_mask
            )
            hidden_states = outputs.last_hidden_state
            text_hidden_states = hidden_states[:, : text_len - 1]
            audio_hidden_states = hidden_states[:, text_len - 1 : -1]

            audio_logits = torch.stack(
                [gpt.head_code[i](audio_hidden_states) for i in range(gpt.num_vq)],
                dim=2,
            )
            audio_loss = loss_fn(
                audio_logits.flatten(0, 2), labels[:, text_len:].flatten(0, 2)
            )
            loss = audio_loss
            if train_text:
                text_logits = gpt.head_text(text_hidden_states)
                text_loss = loss_fn(
                    text_logits.flatten(0, 1), labels[:, 1:text_len, 0].flatten(0, 1)
                )
                loss += text_loss
                logger.meters["text_loss"].update(text_loss.item(), n=batch_size)

            gpt_gen_mel_specs = decoder_decoder(
                audio_hidden_states[:, :-1].transpose(1, 2)
            ).transpose(1, 2)
            mse_loss = torch.nn.functional.mse_loss(gpt_gen_mel_specs, audio_mel_specs)
            loss += 0.01 * mse_loss

            optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_norm_(speaker_embeds.values(), 1.0)
            optimizer.step()
            logger.meters["loss"].update(loss.item(), n=batch_size)
            logger.meters["mse_loss"].update(mse_loss.item(), n=batch_size)
            logger.meters["audio_loss"].update(audio_loss.item(), n=batch_size)
        lr_scheduler.step()
    optimizer.zero_grad()
    return speaker_embeds


if __name__ == "__main__":
    import argparse
    import os
    import numpy as np
    import pathlib
    from modules.models import load_chat_tts
    from modules.devices import devices
    from modules import config
    from modules.speaker import Speaker

    config.runtime_env_vars.no_half = True
    devices.reset_device()

    parser = argparse.ArgumentParser()
    parser.add_argument("--save_folder", type=str, default="./")
    parser.add_argument("--batch_size", type=int, default=16)
    parser.add_argument("--epochs", type=int, default=100)
    parser.add_argument("--train_text", action="store_true", help="train text loss")
    # 初始化 speaker
    parser.add_argument("--init_speaker", type=str)
    parser.add_argument(
        "--data_path",
        type=str,
        default="datasets/data_speaker_a/speaker_a.list",
        help="the data_path to json/list file",
    )
    parser.add_argument("--tar_path", type=str, help="the tarball path with wavs")
    parser.add_argument(
        "--tar_in_memory", action="store_true", help="load tarball in memory"
    )

    args = parser.parse_args()

    data_path: str = args.data_path
    tar_path: str | None = args.tar_path
    tar_in_memory: bool = args.tar_in_memory
    train_text: bool = args.train_text
    # gpt_lora: bool = args.gpt_lora
    # gpt_kbit: int = args.gpt_kbit
    save_folder: str = args.save_folder
    batch_size: int = args.batch_size
    epochs: int = args.epochs
    init_speaker: str = args.init_speaker

    speaker_embeds_save_path = os.path.join(save_folder, "speaker_embeds.npz")

    chat = load_chat_tts()
    dataset = XzListTar(
        root=data_path,
        tokenizer=chat.pretrain_models["tokenizer"],
        vocos_model=chat.pretrain_models["vocos"],
        tar_path=tar_path,
        tar_in_memory=tar_in_memory,
        device=devices.device,
        # speakers=None,  # set(['speaker_A', 'speaker_B'])
    )

    print("len(dataset)", len(dataset))

    speaker_embeds = None
    if init_speaker:
        spk: Speaker = Speaker.from_file(init_speaker)
        speaker_embeds = {
            speaker: torch.tensor(
                spk.emb,
                device=devices.device,
                requires_grad=True,
            )
            for speaker in dataset.speakers
        }

    speaker_embeds = train_speaker_embeddings(
        chat,
        dataset,
        chat.pretrain_models["gpt"],
        batch_size=batch_size,
        epochs=epochs,
        train_text=train_text,
        speaker_embeds=speaker_embeds,
    )
    speaker_outs = {
        speaker: Speaker(speaker_embed.detach().cpu(), f"ep{epochs}_{speaker}")
        for speaker, speaker_embed in speaker_embeds.items()
    }
    time_str = np.datetime_as_string(np.datetime64("now", "s"))
    time_str = time_str.replace(":", "_").replace(" ", "_").replace("-", "_")
    for speaker, speaker_out in speaker_outs.items():
        torch.save(
            speaker_out,
            pathlib.Path(save_folder) / f"spk_{speaker}_{time_str}_ep{epochs}.pt",
        )

# example
"""
python -m modules.finetune.train_speaker \
    --data_path datasets/data_speaker_a/speaker_a.list \
    --save_folder ./data \
    --init_speaker ./data/speakers/Bob.pt \
    --epochs 100 \
    --batch_size 6 \
    --train_text
"""