Spaces:
Sleeping
Sleeping
File size: 3,433 Bytes
32b2aaa d2b7e94 32b2aaa d2b7e94 32b2aaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# Refer from https://github.com/NVIDIA/BigVGAN
import math
import torch
import torch.nn as nn
from torch import nn
from torch.nn.utils.parametrizations import weight_norm
from .alias_free_torch import DownSample1d, UpSample1d
class SnakeBeta(nn.Module):
"""
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(self, in_features, alpha=1.0, clamp=(1e-2, 50)):
"""
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
"""
super().__init__()
self.in_features = in_features
self.log_alpha = nn.Parameter(torch.zeros(in_features) + math.log(alpha))
self.log_beta = nn.Parameter(torch.zeros(in_features) + math.log(alpha))
self.clamp = clamp
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta ∶= x + 1/b * sin^2 (xa)
"""
alpha = self.log_alpha.exp().clamp(*self.clamp)
alpha = alpha[None, :, None]
beta = self.log_beta.exp().clamp(*self.clamp)
beta = beta[None, :, None]
x = x + (1.0 / beta) * (x * alpha).sin().pow(2)
return x
class UpActDown(nn.Module):
def __init__(
self,
act,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12,
):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = act
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
def forward(self, x):
# x: [B,C,T]
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x
class AMPBlock(nn.Sequential):
def __init__(self, channels, *, kernel_size=3, dilations=(1, 3, 5)):
super().__init__(
*(self._make_layer(channels, kernel_size, d) for d in dilations)
)
def _make_layer(self, channels, kernel_size, dilation):
return nn.Sequential(
weight_norm(
nn.Conv1d(
channels, channels, kernel_size, dilation=dilation, padding="same"
)
),
UpActDown(act=SnakeBeta(channels)),
weight_norm(nn.Conv1d(channels, channels, kernel_size, padding="same")),
)
def forward(self, x):
return x + super().forward(x)
|