File size: 11,001 Bytes
32b2aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b7e94
 
 
32b2aaa
 
 
d2b7e94
 
 
 
 
 
32b2aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b7e94
 
 
32b2aaa
 
 
 
 
 
 
 
 
d2b7e94
 
 
32b2aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b7e94
 
 
32b2aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b7e94
 
 
 
 
 
 
 
 
32b2aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b7e94
 
 
 
 
 
32b2aaa
 
 
 
 
 
 
d2b7e94
 
 
 
 
 
32b2aaa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
""" refer from https://github.com/zceng/LVCNet """

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import nn
from torch.nn.utils.parametrizations import weight_norm

from .amp import AMPBlock


class KernelPredictor(torch.nn.Module):
    """Kernel predictor for the location-variable convolutions"""

    def __init__(
        self,
        cond_channels,
        conv_in_channels,
        conv_out_channels,
        conv_layers,
        conv_kernel_size=3,
        kpnet_hidden_channels=64,
        kpnet_conv_size=3,
        kpnet_dropout=0.0,
        kpnet_nonlinear_activation="LeakyReLU",
        kpnet_nonlinear_activation_params={"negative_slope": 0.1},
    ):
        """
        Args:
            cond_channels (int): number of channel for the conditioning sequence,
            conv_in_channels (int): number of channel for the input sequence,
            conv_out_channels (int): number of channel for the output sequence,
            conv_layers (int): number of layers
        """
        super().__init__()

        self.conv_in_channels = conv_in_channels
        self.conv_out_channels = conv_out_channels
        self.conv_kernel_size = conv_kernel_size
        self.conv_layers = conv_layers

        kpnet_kernel_channels = (
            conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers
        )  # l_w
        kpnet_bias_channels = conv_out_channels * conv_layers  # l_b

        self.input_conv = nn.Sequential(
            weight_norm(
                nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)
            ),
            getattr(nn, kpnet_nonlinear_activation)(
                **kpnet_nonlinear_activation_params
            ),
        )

        self.residual_convs = nn.ModuleList()
        padding = (kpnet_conv_size - 1) // 2
        for _ in range(3):
            self.residual_convs.append(
                nn.Sequential(
                    nn.Dropout(kpnet_dropout),
                    weight_norm(
                        nn.Conv1d(
                            kpnet_hidden_channels,
                            kpnet_hidden_channels,
                            kpnet_conv_size,
                            padding=padding,
                            bias=True,
                        )
                    ),
                    getattr(nn, kpnet_nonlinear_activation)(
                        **kpnet_nonlinear_activation_params
                    ),
                    weight_norm(
                        nn.Conv1d(
                            kpnet_hidden_channels,
                            kpnet_hidden_channels,
                            kpnet_conv_size,
                            padding=padding,
                            bias=True,
                        )
                    ),
                    getattr(nn, kpnet_nonlinear_activation)(
                        **kpnet_nonlinear_activation_params
                    ),
                )
            )
        self.kernel_conv = weight_norm(
            nn.Conv1d(
                kpnet_hidden_channels,
                kpnet_kernel_channels,
                kpnet_conv_size,
                padding=padding,
                bias=True,
            )
        )
        self.bias_conv = weight_norm(
            nn.Conv1d(
                kpnet_hidden_channels,
                kpnet_bias_channels,
                kpnet_conv_size,
                padding=padding,
                bias=True,
            )
        )

    def forward(self, c):
        """
        Args:
            c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
        """
        batch, _, cond_length = c.shape
        c = self.input_conv(c)
        for residual_conv in self.residual_convs:
            residual_conv.to(c.device)
            c = c + residual_conv(c)
        k = self.kernel_conv(c)
        b = self.bias_conv(c)
        kernels = k.contiguous().view(
            batch,
            self.conv_layers,
            self.conv_in_channels,
            self.conv_out_channels,
            self.conv_kernel_size,
            cond_length,
        )
        bias = b.contiguous().view(
            batch,
            self.conv_layers,
            self.conv_out_channels,
            cond_length,
        )

        return kernels, bias


class LVCBlock(torch.nn.Module):
    """the location-variable convolutions"""

    def __init__(
        self,
        in_channels,
        cond_channels,
        stride,
        dilations=[1, 3, 9, 27],
        lReLU_slope=0.2,
        conv_kernel_size=3,
        cond_hop_length=256,
        kpnet_hidden_channels=64,
        kpnet_conv_size=3,
        kpnet_dropout=0.0,
        add_extra_noise=False,
        downsampling=False,
    ):
        super().__init__()

        self.add_extra_noise = add_extra_noise

        self.cond_hop_length = cond_hop_length
        self.conv_layers = len(dilations)
        self.conv_kernel_size = conv_kernel_size

        self.kernel_predictor = KernelPredictor(
            cond_channels=cond_channels,
            conv_in_channels=in_channels,
            conv_out_channels=2 * in_channels,
            conv_layers=len(dilations),
            conv_kernel_size=conv_kernel_size,
            kpnet_hidden_channels=kpnet_hidden_channels,
            kpnet_conv_size=kpnet_conv_size,
            kpnet_dropout=kpnet_dropout,
            kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope},
        )

        if downsampling:
            self.convt_pre = nn.Sequential(
                nn.LeakyReLU(lReLU_slope),
                weight_norm(
                    nn.Conv1d(in_channels, in_channels, 2 * stride + 1, padding="same")
                ),
                nn.AvgPool1d(stride, stride),
            )
        else:
            if stride == 1:
                self.convt_pre = nn.Sequential(
                    nn.LeakyReLU(lReLU_slope),
                    weight_norm(nn.Conv1d(in_channels, in_channels, 1)),
                )
            else:
                self.convt_pre = nn.Sequential(
                    nn.LeakyReLU(lReLU_slope),
                    weight_norm(
                        nn.ConvTranspose1d(
                            in_channels,
                            in_channels,
                            2 * stride,
                            stride=stride,
                            padding=stride // 2 + stride % 2,
                            output_padding=stride % 2,
                        )
                    ),
                )

        self.amp_block = AMPBlock(in_channels)

        self.conv_blocks = nn.ModuleList()
        for d in dilations:
            self.conv_blocks.append(
                nn.Sequential(
                    nn.LeakyReLU(lReLU_slope),
                    weight_norm(
                        nn.Conv1d(
                            in_channels,
                            in_channels,
                            conv_kernel_size,
                            dilation=d,
                            padding="same",
                        )
                    ),
                    nn.LeakyReLU(lReLU_slope),
                )
            )

    def forward(self, x, c):
        """forward propagation of the location-variable convolutions.
        Args:
            x (Tensor): the input sequence (batch, in_channels, in_length)
            c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)

        Returns:
            Tensor: the output sequence (batch, in_channels, in_length)
        """
        _, in_channels, _ = x.shape  # (B, c_g, L')

        x = self.convt_pre(x)  # (B, c_g, stride * L')

        # Add one amp block just after the upsampling
        x = self.amp_block(x)  # (B, c_g, stride * L')

        kernels, bias = self.kernel_predictor(c)

        if self.add_extra_noise:
            # Add extra noise to part of the feature
            a, b = x.chunk(2, dim=1)
            b = b + torch.randn_like(b) * 0.1
            x = torch.cat([a, b], dim=1)

        for i, conv in enumerate(self.conv_blocks):
            output = conv(x)  # (B, c_g, stride * L')

            k = kernels[:, i, :, :, :, :]  # (B, 2 * c_g, c_g, kernel_size, cond_length)
            b = bias[:, i, :, :]  # (B, 2 * c_g, cond_length)

            output = self.location_variable_convolution(
                output, k, b, hop_size=self.cond_hop_length
            )  # (B, 2 * c_g, stride * L'): LVC
            x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh(
                output[:, in_channels:, :]
            )  # (B, c_g, stride * L'): GAU

        return x

    def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256):
        """perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
        Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
        Args:
            x (Tensor): the input sequence (batch, in_channels, in_length).
            kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
            bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
            dilation (int): the dilation of convolution.
            hop_size (int): the hop_size of the conditioning sequence.
        Returns:
            (Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
        """
        batch, _, in_length = x.shape
        batch, _, out_channels, kernel_size, kernel_length = kernel.shape

        assert in_length == (
            kernel_length * hop_size
        ), f"length of (x, kernel) is not matched, {in_length} != {kernel_length} * {hop_size}"

        padding = dilation * int((kernel_size - 1) / 2)
        x = F.pad(
            x, (padding, padding), "constant", 0
        )  # (batch, in_channels, in_length + 2*padding)
        x = x.unfold(
            2, hop_size + 2 * padding, hop_size
        )  # (batch, in_channels, kernel_length, hop_size + 2*padding)

        if hop_size < dilation:
            x = F.pad(x, (0, dilation), "constant", 0)
        x = x.unfold(
            3, dilation, dilation
        )  # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
        x = x[:, :, :, :, :hop_size]
        x = x.transpose(
            3, 4
        )  # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
        x = x.unfold(
            4, kernel_size, 1
        )  # (batch, in_channels, kernel_length, dilation, _, kernel_size)

        o = torch.einsum("bildsk,biokl->bolsd", x, kernel)
        o = o.to(memory_format=torch.channels_last_3d)
        bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
        o = o + bias
        o = o.contiguous().view(batch, out_channels, -1)

        return o