Spaces:
Sleeping
Sleeping
File size: 6,154 Bytes
ae79826 d2b7e94 ae79826 627d3d7 d2b7e94 ae79826 ba0472f ae79826 f367757 ae79826 f367757 ae79826 f367757 ae79826 f367757 ae79826 f367757 ae79826 f367757 ae79826 bf13828 ae79826 f367757 ae79826 f367757 ae79826 f367757 ae79826 f367757 ae79826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import torch
from modules.normalization import text_normalize
from modules.utils.hf import spaces
from modules.webui import webui_utils
from modules.webui.webui_utils import get_speakers, get_styles, split_long_text
# NOTE: 因为 text_normalize 需要使用 tokenizer
@torch.inference_mode()
@spaces.GPU(duration=120)
def merge_dataframe_to_ssml(dataframe, spk, style, seed):
if style == "*auto":
style = None
if spk == "-1" or spk == -1:
spk = None
if seed == -1 or seed == "-1":
seed = None
ssml = ""
indent = " " * 2
for i, row in dataframe.iterrows():
text = row.iloc[1]
text = text_normalize(text)
if text.strip() == "":
continue
ssml += f"{indent}<voice"
if spk:
ssml += f' spk="{spk}"'
if style:
ssml += f' style="{style}"'
if seed:
ssml += f' seed="{seed}"'
ssml += ">\n"
ssml += f"{indent}{indent}{text}\n"
ssml += f"{indent}</voice>\n"
# 原封不动输出回去是为了触发 loadding 效果
return dataframe, spk, style, seed, f"<speak version='0.1'>\n{ssml}</speak>"
# 长文本处理
# 可以输入长文本,并选择切割方法,切割之后可以将拼接的SSML发送到SSML tab
# 根据 。 句号切割,切割之后显示到 data table
def create_spliter_tab(ssml_input, tabs1, tabs2):
speakers, speaker_names = webui_utils.get_speaker_names()
speaker_names = ["*random"] + speaker_names
styles = ["*auto"] + [s.get("name") for s in get_styles()]
with gr.Row():
with gr.Column(scale=1):
# 选择说话人 选择风格 选择seed
with gr.Group():
gr.Markdown("🗣️Speaker")
spk_input_text = gr.Textbox(
label="Speaker (Text or Seed)",
value="female2",
show_label=False,
)
spk_input_dropdown = gr.Dropdown(
choices=speaker_names,
interactive=True,
value="female : female2",
show_label=False,
)
spk_rand_button = gr.Button(
value="🎲",
variant="secondary",
)
with gr.Group():
gr.Markdown("🎭Style")
style_input_dropdown = gr.Dropdown(
choices=styles,
interactive=True,
show_label=False,
value="*auto",
)
with gr.Group():
gr.Markdown("💃Inference Seed")
infer_seed_input = gr.Number(
value=42,
label="Inference Seed",
show_label=False,
minimum=-1,
maximum=2**32 - 1,
)
infer_seed_rand_button = gr.Button(
value="🎲",
# tooltip="Random Seed",
variant="secondary",
)
with gr.Group():
gr.Markdown("🎛️Spliter")
eos_input = gr.Textbox(
label="eos",
value="[uv_break]",
)
spliter_thr_input = gr.Slider(
label="Spliter Threshold",
value=100,
minimum=50,
maximum=1000,
step=1,
)
with gr.Column(scale=3):
with gr.Group():
gr.Markdown("📝Long Text Input")
gr.Markdown("SSML_SPLITER_GUIDE")
long_text_input = gr.Textbox(
label="Long Text Input",
lines=10,
placeholder="输入长文本",
elem_id="long-text-input",
show_label=False,
)
long_text_split_button = gr.Button("🔪Split Text")
with gr.Group():
gr.Markdown("🎨Output")
long_text_output = gr.DataFrame(
headers=["index", "text", "length"],
datatype=["number", "str", "number"],
elem_id="long-text-output",
interactive=True,
wrap=True,
value=[],
row_count=(0, "dynamic"),
col_count=(3, "fixed"),
)
send_btn = gr.Button("📩Send to SSML", variant="primary")
spk_input_dropdown.change(
fn=lambda x: x.startswith("*") and "-1" or x.split(":")[-1].strip(),
inputs=[spk_input_dropdown],
outputs=[spk_input_text],
)
spk_rand_button.click(
lambda x: int(torch.randint(0, 2**32 - 1, (1,)).item()),
inputs=[spk_input_text],
outputs=[spk_input_text],
)
infer_seed_rand_button.click(
lambda x: int(torch.randint(0, 2**32 - 1, (1,)).item()),
inputs=[infer_seed_input],
outputs=[infer_seed_input],
)
long_text_split_button.click(
split_long_text,
inputs=[
long_text_input,
spliter_thr_input,
eos_input,
],
outputs=[
long_text_output,
],
)
infer_seed_rand_button.click(
lambda x: int(torch.randint(0, 2**32 - 1, (1,)).item()),
inputs=[infer_seed_input],
outputs=[infer_seed_input],
)
send_btn.click(
merge_dataframe_to_ssml,
inputs=[
long_text_output,
spk_input_text,
style_input_dropdown,
infer_seed_input,
],
outputs=[
long_text_output,
spk_input_text,
style_input_dropdown,
infer_seed_input,
ssml_input,
],
)
def change_tab():
return gr.Tabs(selected="ssml"), gr.Tabs(selected="ssml.editor")
send_btn.click(change_tab, inputs=[], outputs=[tabs1, tabs2])
|