File size: 17,564 Bytes
d2b7e94
1df74c6
 
d2b7e94
1df74c6
d2b7e94
 
1df74c6
 
 
 
 
 
d2b7e94
1df74c6
 
 
d2b7e94
1df74c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import abc
import functools
import io
import json
import logging
import os
import tarfile
import typing

import torch.utils.data
import torchaudio
import transformers
import vocos
from torchvision.datasets.utils import download_url

from modules.ChatTTS.ChatTTS.utils.infer_utils import (
    apply_character_map,
    count_invalid_characters,
)


class LazyDataType(typing.TypedDict):
    filepath: str
    speaker: str
    lang: str
    text: str


class DataType(LazyDataType):
    text_input_ids: torch.Tensor  # (batch_size, text_len)
    text_attention_mask: torch.Tensor  # (batch_size, text_len)
    audio_mel_specs: torch.Tensor  # (batch_size, audio_len*2, 100)
    audio_attention_mask: torch.Tensor  # (batch_size, audio_len)


class XzListTarKwargsType(typing.TypedDict):
    tokenizer: typing.Union[transformers.PreTrainedTokenizer, None]
    vocos_model: typing.Union[vocos.Vocos, None]
    device: typing.Union[str, torch.device, None]
    speakers: typing.Union[typing.Iterable[str], None]
    sample_rate: typing.Union[int]
    default_speaker: typing.Union[str, None]
    default_lang: typing.Union[str, None]
    tar_in_memory: typing.Union[bool, None]
    process_ahead: typing.Union[bool, None]


class AudioFolder(torch.utils.data.Dataset, abc.ABC):
    def __init__(
        self,
        root: str | io.BytesIO,
        tokenizer: transformers.PreTrainedTokenizer | None = None,
        vocos_model: vocos.Vocos | None = None,
        device: str | torch.device | None = None,
        speakers: typing.Iterable[str] | None = None,
        sample_rate: int = 24_000,
        default_speaker: str | None = None,
        default_lang: str | None = None,
        tar_path: str | None = None,
        tar_in_memory: bool = False,
        process_ahead: bool = False,
    ) -> None:
        self.root = root
        self.sample_rate = sample_rate
        self.default_speaker = default_speaker
        self.default_lang = default_lang

        self.logger = logging.getLogger(__name__)
        self.normalizer = {}

        self.tokenizer = tokenizer
        self.vocos = vocos_model
        self.vocos_device = (
            None if self.vocos is None else next(self.vocos.parameters()).device
        )
        self.device = device or self.vocos_device

        # tar -cvf ../Xz.tar *
        # tar -xf Xz.tar -C ./Xz
        self.tar_path = tar_path
        self.tar_file = None
        self.tar_io = None
        if tar_path is not None:
            if tar_in_memory:
                with open(tar_path, "rb") as f:
                    self.tar_io = io.BytesIO(f.read())
                self.tar_file = tarfile.open(fileobj=self.tar_io)
            else:
                self.tar_file = tarfile.open(tar_path)

        self.lazy_data, self.speakers = self.get_lazy_data(root, speakers)

        self.text_input_ids: dict[int, torch.Tensor] = {}
        self.audio_mel_specs: dict[int, torch.Tensor] = {}
        if process_ahead:
            for n, item in enumerate(self.lazy_data):
                self.audio_mel_specs[n] = self.preprocess_audio(item["filepath"])
                self.text_input_ids[n] = self.preprocess_text(
                    item["text"], item["lang"]
                )
            if self.tar_file is not None:
                self.tar_file.close()
            if self.tar_io is not None:
                self.tar_io.close()

    @abc.abstractmethod
    def get_raw_data(self, root: str | io.BytesIO) -> list[dict[str, str]]: ...

    @staticmethod
    @abc.abstractmethod
    def save_config(
        save_path: str, lazy_data: list[LazyDataType], rel_path: str = "./"
    ) -> None: ...

    def __len__(self):
        return len(self.lazy_data)

    def __getitem__(self, n: int) -> DataType:
        lazy_data = self.lazy_data[n]
        if n in self.audio_mel_specs:
            audio_mel_specs = self.audio_mel_specs[n]
            text_input_ids = self.text_input_ids[n]
        else:
            audio_mel_specs = self.preprocess_audio(lazy_data["filepath"])
            text_input_ids = self.preprocess_text(lazy_data["text"], lazy_data["lang"])
            self.audio_mel_specs[n] = audio_mel_specs
            self.text_input_ids[n] = text_input_ids
            if len(self.audio_mel_specs) == len(self.lazy_data):
                if self.tar_file is not None:
                    self.tar_file.close()
                if self.tar_io is not None:
                    self.tar_io.close()
        text_attention_mask = torch.ones(
            len(text_input_ids), device=text_input_ids.device
        )
        audio_attention_mask = torch.ones(
            (len(audio_mel_specs) + 1) // 2,
            device=audio_mel_specs.device,
        )
        return {
            "filepath": lazy_data["filepath"],
            "speaker": lazy_data["speaker"],
            "lang": lazy_data["lang"],
            "text": lazy_data["text"],
            "text_input_ids": text_input_ids,
            "text_attention_mask": text_attention_mask,
            "audio_mel_specs": audio_mel_specs,
            "audio_attention_mask": audio_attention_mask,
        }

    def get_lazy_data(
        self,
        root: str | io.BytesIO,
        speakers: typing.Iterable[str] | None = None,
    ) -> tuple[list[LazyDataType], set[str]]:
        if speakers is not None:
            new_speakers = set(speakers)
        else:
            new_speakers = set()
        lazy_data = []

        raw_data = self.get_raw_data(root)
        folder_path = os.path.dirname(root) if isinstance(root, str) else ""
        for item in raw_data:
            if "speaker" not in item:
                item["speaker"] = self.default_speaker
            if "lang" not in item:
                item["lang"] = self.default_lang

            if speakers is not None and item["speaker"] not in speakers:
                continue
            if speakers is None and item["speaker"] not in new_speakers:
                new_speakers.add(item["speaker"])
            if self.tar_file is None and isinstance(root, str):
                filepath = os.path.join(folder_path, item["filepath"])
            else:
                filepath = item["filepath"]
            lazy_data.append(
                {
                    "filepath": filepath,
                    "speaker": item["speaker"],
                    "lang": item["lang"].lower(),
                    "text": item["text"],
                }
            )
        return lazy_data, new_speakers

    def preprocess_text(
        self,
        text: str,
        lang: str,
    ) -> torch.Tensor:
        invalid_characters = count_invalid_characters(text)
        if len(invalid_characters):
            # self.logger.log(logging.WARNING, f'Invalid characters found! : {invalid_characters}')
            text = apply_character_map(text)

        # if not skip_refine_text:
        #     text_tokens = refine_text(self.pretrain_models, text, **params_refine_text)['ids']
        #     text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens]
        #     text = self.pretrain_models['tokenizer'].batch_decode(text_tokens)
        #     if refine_text_only:
        #         return text

        text = f"[Stts][spk_emb]{text}[Ptts]"
        # text = f'[Stts][empty_spk]{text}[Ptts]'

        text_token = self.tokenizer(
            text, return_tensors="pt", add_special_tokens=False
        ).to(device=self.device)
        return text_token["input_ids"].squeeze(0)

    def preprocess_audio(self, filepath: str) -> torch.Tensor:
        if self.tar_file is not None:
            file = self.tar_file.extractfile(filepath)
            waveform, sample_rate = torchaudio.load(file)
        else:
            waveform, sample_rate = torchaudio.load(filepath)
        waveform = waveform.to(device=self.vocos_device)
        if sample_rate != self.sample_rate:
            waveform = torchaudio.functional.resample(
                waveform,
                orig_freq=sample_rate,
                new_freq=self.sample_rate,
            )
        mel_spec: torch.Tensor = self.vocos.feature_extractor(waveform)
        return (
            mel_spec.to(device=self.device).squeeze(0).transpose(0, 1)
        )  # (audio_len*2, 100)


class JsonFolder(AudioFolder):
    """
    In json file, each item is formatted as following example:
    `{"filepath": "path/to/file.wav", "speaker": "John", "lang": "ZH", "text": "Hello"}`.

    filepath is relative to the dirname of root json file.
    """

    def get_raw_data(self, root: str | io.BytesIO) -> list[dict[str, str]]:
        with open(root, "r", encoding="utf-8") as f:
            raw_data = json.load(f)
        return raw_data

    @staticmethod
    def save_config(
        save_path: str, lazy_data: list[LazyDataType], rel_path: str = "./"
    ) -> None:
        save_data = [item.copy() for item in lazy_data]
        for item in save_data:
            item["filepath"] = os.path.relpath(item["filepath"], rel_path)
        with open(save_path, "w", encoding="utf-8") as f:
            json.dump(save_data, f, ensure_ascii=False, indent=4)


class ListFolder(AudioFolder):
    """
    In list file, each row is formatted as `filepath|speaker|lang|text` with `|` as separator.
    `path/to/file.wav|John|ZH|Hello`.

    filepath is relative to the dirname of root list file.
    """

    def get_raw_data(self, root: str | io.BytesIO) -> list[dict[str, str]]:
        raw_data = []
        with open(root, "r", encoding="utf-8") as f:
            for line in f.readlines():
                line = line.strip().removesuffix("\n")
                if len(line) == 0:
                    continue
                filepath, speaker, lang, text = line.split(sep="|", maxsplit=3)
                raw_data.append(
                    {
                        "text": text,
                        "filepath": filepath,
                        "speaker": speaker,
                        "lang": lang,
                    }
                )
        return raw_data

    @staticmethod
    def save_config(
        save_path: str, lazy_data: list[LazyDataType], rel_path: str = "./"
    ) -> None:
        save_data = [item.copy() for item in lazy_data]
        for item in save_data:
            item["filepath"] = os.path.relpath(item["filepath"], rel_path)
        with open(save_path, "w", encoding="utf-8") as f:
            for item in save_data:
                f.write(
                    f"{item['filepath']}|{item['speaker']}|{item['lang']}|{item['text']}\n"
                )


class XzListTar(ListFolder):
    def __init__(
        self,
        *args,
        root: str | io.BytesIO,
        tar_path: str | None = None,
        **kwargs,
    ):
        if isinstance(root, io.BytesIO):
            assert tar_path is not None
        else:
            # make sure root is a list file
            if not root.endswith(".list"):  # folder case
                if os.path.isfile(root):
                    raise FileExistsError(f"{root} is a file!")
                elif not os.path.exists(root):
                    os.makedirs(root)
                root = os.path.join(root, "all.list")
        if isinstance(root, str) and not os.path.isfile(root):
            # prepare all.list
            self.concat_dataset(
                save_folder=os.path.dirname(root),
                langs=kwargs.get("langs", ["zh", "en"]),
            )

        super().__init__(root, *args, tar_path=tar_path, **kwargs)

    def concat_dataset(
        self, save_folder: str | None = None, langs: list[str] = ["zh", "en"]
    ) -> None:
        if save_folder is None:
            save_folder = os.path.dirname(self.root)
        if os.path.isfile(save_folder):
            raise FileExistsError(f"{save_folder} already exists as a file!")
        elif not os.path.exists(save_folder):
            os.makedirs(save_folder)
        lazy_data = []

        for member in self.tar_file.getmembers():
            if not member.isfile():
                continue
            if member.name.endswith(".list"):
                print(member.name)
                root_io = self.tar_file.extractfile(member)
                lazy_data += ListFolder(root_io).lazy_data
            if member.name.endswith(".json"):
                print(member.name)
                root_io = self.tar_file.extractfile(member)
                lazy_data += JsonFolder(root_io).lazy_data
        if langs is not None:
            lazy_data = [item for item in lazy_data if item["lang"] in langs]
        ListFolder.save_config(os.path.join(save_folder, "all.list"), lazy_data)
        JsonFolder.save_config(os.path.join(save_folder, "all.json"), lazy_data)
        print(f"all.list and all.json are saved to {save_folder}")


class XzListFolder(ListFolder):
    """
    [XzδΉ”εΈŒ](https://space.bilibili.com/5859321)

    Only look at the basename of filepath in list file. Previous folder paths are ignored.
    Files are organized as `[list basename]/[file basename]`

    Example tree structure:

    [folder]
    β”œβ”€β”€ speaker_A
    β”‚   β”œβ”€β”€ 1.wav
    β”‚   └── 2.wav
    β”œβ”€β”€ speaker_A.list
    β”œβ”€β”€ speaker_B
    β”‚   β”œβ”€β”€ 1.wav
    β”‚   └── 2.wav
    └── speaker_B.list
    """

    def get_raw_data(self, root: str | io.BytesIO) -> list[dict[str, str]]:
        raw_data = super().get_raw_data(root)
        for item in raw_data:
            item["filepath"] = os.path.join(
                os.path.basename(root).removesuffix(".list"),
                os.path.basename(item["filepath"]),
            )
        return raw_data


class AudioCollator:
    def __init__(self, text_pad: int = 0, audio_pad: int = 0):
        self.text_pad = text_pad
        self.audio_pad = audio_pad

    def __call__(self, batch: list[DataType]):
        batch = [x for x in batch if x is not None]

        audio_maxlen = max(len(item["audio_attention_mask"]) for item in batch)
        text_maxlen = max(len(item["text_attention_mask"]) for item in batch)

        filepath = []
        speaker = []
        lang = []
        text = []
        text_input_ids = []
        text_attention_mask = []
        audio_mel_specs = []
        audio_attention_mask = []

        for x in batch:
            filepath.append(x["filepath"])
            speaker.append(x["speaker"])
            lang.append(x["lang"])
            text.append(x["text"])
            text_input_ids.append(
                torch.nn.functional.pad(
                    x["text_input_ids"],
                    (text_maxlen - len(x["text_input_ids"]), 0),
                    value=self.text_pad,
                )
            )
            text_attention_mask.append(
                torch.nn.functional.pad(
                    x["text_attention_mask"],
                    (text_maxlen - len(x["text_attention_mask"]), 0),
                    value=0,
                )
            )
            audio_mel_specs.append(
                torch.nn.functional.pad(
                    x["audio_mel_specs"],
                    (0, 0, 0, audio_maxlen * 2 - len(x["audio_mel_specs"])),
                    value=self.audio_pad,
                )
            )
            audio_attention_mask.append(
                torch.nn.functional.pad(
                    x["audio_attention_mask"],
                    (0, audio_maxlen - len(x["audio_attention_mask"])),
                    value=0,
                )
            )
        return {
            "filepath": filepath,
            "speaker": speaker,
            "lang": lang,
            "text": text,
            "text_input_ids": torch.stack(text_input_ids),
            "text_attention_mask": torch.stack(text_attention_mask),
            "audio_mel_specs": torch.stack(audio_mel_specs),
            "audio_attention_mask": torch.stack(audio_attention_mask),
        }


def formalize_xz_list(src_folder: str):
    for root, _, files in os.walk(src_folder):
        for file in files:
            if file.endswith(".list"):
                filepath = os.path.join(root, file)
                print(filepath)
                lazy_data = XzListFolder(filepath).lazy_data
                XzListFolder.save_config(filepath, lazy_data, rel_path=src_folder)


def concat_dataset(
    src_folder: str, save_folder: str | None = None, langs: list[str] = ["zh", "en"]
) -> None:
    if save_folder is None:
        save_folder = src_folder
    if os.path.isfile(save_folder):
        raise FileExistsError(f"{save_folder} already exists as a file!")
    elif not os.path.exists(save_folder):
        os.makedirs(save_folder)
    lazy_data = []
    same_folder = os.path.samefile(src_folder, save_folder)
    for root, _, files in os.walk(src_folder):
        for file in files:
            filepath = os.path.join(root, file)
            if same_folder and file in ("all.list", "all.json"):
                continue
            if file.endswith(".list"):
                print(filepath)
                lazy_data += ListFolder(filepath).lazy_data
            if file.endswith(".json"):
                print(filepath)
                lazy_data += JsonFolder(filepath).lazy_data
    if langs is not None:
        lazy_data = [item for item in lazy_data if item["lang"] in langs]
    ListFolder.save_config(
        os.path.join(save_folder, "all.list"), lazy_data, rel_path=save_folder
    )
    JsonFolder.save_config(
        os.path.join(save_folder, "all.json"), lazy_data, rel_path=save_folder
    )
    print(f"all.list and all.json are saved to {save_folder}")