ChatTTS-Forge / modules /api /impl /openai_api.py
zhzluke96
update
d5d0921
raw
history blame
5.37 kB
from fastapi import File, Form, HTTPException, Body, UploadFile
from numpy import clip
from pydantic import BaseModel, Field
from fastapi.responses import StreamingResponse
from modules.api.impl.handler.TTSHandler import TTSHandler
from modules.api.impl.model.audio_model import AdjustConfig, AudioFormat
from modules.api.impl.model.chattts_model import ChatTTSConfig, InferConfig
from modules.api.impl.model.enhancer_model import EnhancerConfig
from typing import List, Optional
from modules.api import utils as api_utils
from modules.api.Api import APIManager
from modules.speaker import Speaker, speaker_mgr
from modules.data import styles_mgr
class AudioSpeechRequest(BaseModel):
input: str # 需要合成的文本
model: str = "chattts-4w"
voice: str = "female2"
response_format: AudioFormat = "mp3"
speed: float = Field(1, ge=0.1, le=10, description="Speed of the audio")
seed: int = 42
temperature: float = 0.3
top_k: int = 20
top_p: float = 0.7
style: str = ""
batch_size: int = Field(1, ge=1, le=20, description="Batch size")
spliter_threshold: float = Field(
100, ge=10, le=1024, description="Threshold for sentence spliter"
)
# end of sentence
eos: str = "[uv_break]"
enhance: bool = False
denoise: bool = False
async def openai_speech_api(
request: AudioSpeechRequest = Body(
..., description="JSON body with model, input text, and voice"
)
):
model = request.model
input_text = request.input
voice = request.voice
style = request.style
eos = request.eos
seed = request.seed
response_format = request.response_format
if not isinstance(response_format, AudioFormat) and isinstance(
response_format, str
):
response_format = AudioFormat(response_format)
batch_size = request.batch_size
spliter_threshold = request.spliter_threshold
speed = request.speed
speed = clip(speed, 0.1, 10)
if not input_text:
raise HTTPException(status_code=400, detail="Input text is required.")
if speaker_mgr.get_speaker(voice) is None:
raise HTTPException(status_code=400, detail="Invalid voice.")
try:
if style:
styles_mgr.find_item_by_name(style)
except:
raise HTTPException(status_code=400, detail="Invalid style.")
ctx_params = api_utils.calc_spk_style(spk=voice, style=style)
speaker = ctx_params.get("spk")
if not isinstance(speaker, Speaker):
raise HTTPException(status_code=400, detail="Invalid voice.")
tts_config = ChatTTSConfig(
style=style,
temperature=request.temperature,
top_k=request.top_k,
top_p=request.top_p,
)
infer_config = InferConfig(
batch_size=batch_size,
spliter_threshold=spliter_threshold,
eos=eos,
seed=seed,
)
adjust_config = AdjustConfig(speaking_rate=speed)
enhancer_config = EnhancerConfig(
enabled=request.enhance or request.denoise or False,
lambd=0.9 if request.denoise else 0.1,
)
try:
handler = TTSHandler(
text_content=input_text,
spk=speaker,
tts_config=tts_config,
infer_config=infer_config,
adjust_config=adjust_config,
enhancer_config=enhancer_config,
)
buffer = handler.enqueue_to_buffer(response_format)
mime_type = f"audio/{response_format.value}"
if response_format == AudioFormat.mp3:
mime_type = "audio/mpeg"
return StreamingResponse(buffer, media_type=mime_type)
except Exception as e:
import logging
logging.exception(e)
if isinstance(e, HTTPException):
raise e
else:
raise HTTPException(status_code=500, detail=str(e))
class TranscribeSegment(BaseModel):
id: int
seek: float
start: float
end: float
text: str
tokens: list[int]
temperature: float
avg_logprob: float
compression_ratio: float
no_speech_prob: float
class TranscriptionsVerboseResponse(BaseModel):
task: str
language: str
duration: float
text: str
segments: list[TranscribeSegment]
def setup(app: APIManager):
app.post(
"/v1/audio/speech",
description="""
openai api document:
[https://platform.openai.com/docs/guides/text-to-speech](https://platform.openai.com/docs/guides/text-to-speech)
以下属性为本系统自定义属性,不在openai文档中:
- batch_size: 是否开启batch合成,小于等于1表示不使用batch (不推荐)
- spliter_threshold: 开启batch合成时,句子分割的阈值
- style: 风格
> model 可填任意值
""",
)(openai_speech_api)
@app.post(
"/v1/audio/transcriptions",
response_model=TranscriptionsVerboseResponse,
description="Transcribes audio into the input language.",
)
async def transcribe(
file: UploadFile = File(...),
model: str = Form(...),
language: Optional[str] = Form(None),
prompt: Optional[str] = Form(None),
response_format: str = Form("json"),
temperature: float = Form(0),
timestamp_granularities: List[str] = Form(["segment"]),
):
# TODO: Implement transcribe
return api_utils.success_response("not implemented yet")