File size: 14,447 Bytes
88b0dcb c4adcb2 88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
"""
@date: 2021/06/19
@description:
"""
import math
import functools
from scipy import stats
from scipy.ndimage.filters import maximum_filter
import numpy as np
from typing import List
from utils.conversion import uv2xyz, xyz2uv, depth2xyz, uv2pixel, depth2uv, pixel2uv, xyz2pixel, uv2lonlat
from utils.visibility_polygon import calc_visible_polygon
def connect_corners_uv(uv1: np.ndarray, uv2: np.ndarray, length=256) -> np.ndarray:
"""
:param uv1: [u, v]
:param uv2: [u, v]
:param length: Fix the total length in pixel coordinates
:return:
"""
# why -0.5? Check out the uv2Pixel function
p_u1 = uv1[0] * length - 0.5
p_u2 = uv2[0] * length - 0.5
if abs(p_u1 - p_u2) < length / 2:
start = np.ceil(min(p_u1, p_u2))
p = max(p_u1, p_u2)
end = np.floor(p)
if end == np.ceil(p):
end = end - 1
else:
start = np.ceil(max(p_u1, p_u2))
p = min(p_u1, p_u2) + length
end = np.floor(p)
if end == np.ceil(p):
end = end - 1
p_us = (np.arange(start, end + 1) % length).astype(np.float64)
if len(p_us) == 0:
return None
us = (p_us + 0.5) / length # why +0.5? Check out the uv2Pixel function
plan_y = boundary_type(np.array([uv1, uv2]))
xyz1 = uv2xyz(np.array(uv1), plan_y)
xyz2 = uv2xyz(np.array(uv2), plan_y)
x1 = xyz1[0]
z1 = xyz1[2]
x2 = xyz2[0]
z2 = xyz2[2]
d_x = x2 - x1
d_z = z2 - z1
lon_s = (us - 0.5) * 2 * np.pi
k = np.tan(lon_s)
ps = (k * z1 - x1) / (d_x - k * d_z)
cs = np.sqrt((z1 + ps * d_z) ** 2 + (x1 + ps * d_x) ** 2)
lats = np.arctan2(plan_y, cs)
vs = lats / np.pi + 0.5
uv = np.stack([us, vs], axis=-1)
if start == end:
return uv[0:1]
return uv
def connect_corners_xyz(uv1: np.ndarray, uv2: np.ndarray, step=0.01) -> np.ndarray:
"""
:param uv1: [u, v]
:param uv2: [u, v]
:param step: Fixed step size in xyz coordinates
:return:
"""
plan_y = boundary_type(np.array([uv1, uv2]))
xyz1 = uv2xyz(np.array(uv1), plan_y)
xyz2 = uv2xyz(np.array(uv2), plan_y)
vec = xyz2 - xyz1
norm = np.linalg.norm(vec, ord=2)
direct = vec / norm
xyz = np.array([xyz1 + direct * dis for dis in np.linspace(0, norm, int(norm / step))])
if len(xyz) == 0:
xyz = np.array([xyz2])
uv = xyz2uv(xyz)
return uv
def connect_corners(uv1: np.ndarray, uv2: np.ndarray, step=0.01, length=None) -> np.ndarray:
"""
:param uv1: [u, v]
:param uv2: [u, v]
:param step:
:param length:
:return: [[u1, v1], [u2, v2]....] if length!=None,length of return result = length
"""
if length is not None:
uv = connect_corners_uv(uv1, uv2, length)
elif step is not None:
uv = connect_corners_xyz(uv1, uv2, step)
else:
uv = np.array([uv1])
return uv
def visibility_corners(corners):
plan_y = boundary_type(corners)
xyz = uv2xyz(corners, plan_y)
xz = xyz[:, ::2]
xz = calc_visible_polygon(center=np.array([0, 0]), polygon=xz, show=False)
xyz = np.insert(xz, 1, plan_y, axis=1)
output = xyz2uv(xyz).astype(np.float32)
return output
def corners2boundary(corners: np.ndarray, step=0.01, length=None, visible=True) -> np.ndarray:
"""
When there is occlusion, even if the length is fixed, the final output length may be greater than the given length,
which is more defined as the fixed step size under UV
:param length:
:param step:
:param corners: [[u1, v1], [u2, v2]....]
:param visible:
:return: [[u1, v1], [u2, v2]....] if length!=None,length of return result = length
"""
assert step is not None or length is not None, "the step and length parameters cannot be null at the same time"
if len(corners) < 3:
return corners
if visible:
corners = visibility_corners(corners)
n_con = len(corners)
boundary = None
for j in range(n_con):
uv = connect_corners(corners[j], corners[(j + 1) % n_con], step, length)
if uv is None:
continue
if boundary is None:
boundary = uv
else:
boundary = np.concatenate((boundary, uv))
boundary = np.roll(boundary, -boundary.argmin(axis=0)[0], axis=0)
output_polygon = []
for i, p in enumerate(boundary):
q = boundary[(i + 1) % len(boundary)]
if int(p[0] * 10000) == int(q[0] * 10000):
continue
output_polygon.append(p)
output_polygon = np.array(output_polygon, dtype=np.float32)
return output_polygon
def corners2boundaries(ratio: float, corners_xyz: np.ndarray = None, corners_uv: np.ndarray = None, step=0.01,
length=None, visible=True):
"""
When both step and length are None, corners are also returned
:param ratio:
:param corners_xyz:
:param corners_uv:
:param step:
:param length:
:param visible:
:return: floor_boundary, ceil_boundary
"""
if corners_xyz is None:
plan_y = boundary_type(corners_uv)
xyz = uv2xyz(corners_uv, plan_y)
floor_xyz = xyz.copy()
ceil_xyz = xyz.copy()
if plan_y > 0:
ceil_xyz[:, 1] *= -ratio
else:
floor_xyz[:, 1] /= -ratio
else:
floor_xyz = corners_xyz.copy()
ceil_xyz = corners_xyz.copy()
if corners_xyz[0][1] > 0:
ceil_xyz[:, 1] *= -ratio
else:
floor_xyz[:, 1] /= -ratio
floor_uv = xyz2uv(floor_xyz)
ceil_uv = xyz2uv(ceil_xyz)
if step is None and length is None:
return floor_uv, ceil_uv
floor_boundary = corners2boundary(floor_uv, step, length, visible)
ceil_boundary = corners2boundary(ceil_uv, step, length, visible)
return floor_boundary, ceil_boundary
def depth2boundary(depth: np.array, step=0.01, length=None,):
xyz = depth2xyz(depth)
uv = xyz2uv(xyz)
return corners2boundary(uv, step, length, visible=False)
def depth2boundaries(ratio: float, depth: np.array, step=0.01, length=None,):
"""
:param ratio:
:param depth:
:param step:
:param length:
:return: floor_boundary, ceil_boundary
"""
xyz = depth2xyz(depth)
return corners2boundaries(ratio, corners_xyz=xyz, step=step, length=length, visible=False)
def boundary_type(corners: np.ndarray) -> int:
"""
Returns the boundary type that also represents the projection plane
:param corners:
:return:
"""
if is_ceil_boundary(corners):
plan_y = -1
elif is_floor_boundary(corners):
plan_y = 1
else:
# An intersection occurs and an exception is considered
assert False, 'corners error!'
return plan_y
def is_normal_layout(boundaries: List[np.array]):
if len(boundaries) != 2:
print("boundaries length must be 2!")
return False
if boundary_type(boundaries[0]) != -1:
print("ceil boundary error!")
return False
if boundary_type(boundaries[1]) != 1:
print("floor boundary error!")
return False
return True
def is_ceil_boundary(corners: np.ndarray) -> bool:
m = corners[..., 1].max()
return m < 0.5
def is_floor_boundary(corners: np.ndarray) -> bool:
m = corners[..., 1].min()
return m > 0.5
@functools.lru_cache()
def get_gauss_map(sigma=1.5, width=5):
x = np.arange(width*2 + 1) - width
y = stats.norm(0, sigma).pdf(x)
y = y / y.max()
return y
def get_heat_map(u_s, patch_num=256, sigma=2, window_width=15, show=False):
"""
:param window_width:
:param sigma:
:param u_s: [u1, u2, u3, ...]
:param patch_num
:param show
:return:
"""
pixel_us = uv2pixel(u_s, w=patch_num, axis=0)
gauss_map = get_gauss_map(sigma, window_width)
heat_map_all = []
for u in pixel_us:
heat_map = np.zeros(patch_num, dtype=np.float32)
left = u-window_width
right = u+window_width+1
offset = 0
if left < 0:
offset = left
elif right > patch_num:
offset = right - patch_num
left = left - offset
right = right - offset
heat_map[left:right] = gauss_map
if offset != 0:
heat_map = np.roll(heat_map, offset)
heat_map_all.append(heat_map)
heat_map_all = np.array(heat_map_all).max(axis=0)
if show:
import matplotlib.pyplot as plt
plt.imshow(heat_map_all[None].repeat(50, axis=0))
plt.show()
return heat_map_all
def find_peaks(signal, size=15*2+1, min_v=0.05, N=None):
# code from HorizonNet: https://github.com/sunset1995/HorizonNet/blob/master/inference.py
max_v = maximum_filter(signal, size=size, mode='wrap')
pk_loc = np.where(max_v == signal)[0]
pk_loc = pk_loc[signal[pk_loc] > min_v]
if N is not None:
order = np.argsort(-signal[pk_loc])
pk_loc = pk_loc[order[:N]]
pk_loc = pk_loc[np.argsort(pk_loc)]
return pk_loc, signal[pk_loc]
def get_object_cor(depth, size, center_u, patch_num=256):
width_u = size[0, center_u]
height_v = size[1, center_u]
boundary_v = size[2, center_u]
center_boundary_v = depth2uv(depth[center_u:center_u + 1])[0, 1]
center_bottom_v = center_boundary_v - boundary_v
center_top_v = center_bottom_v - height_v
base_v = center_boundary_v - 0.5
assert base_v > 0
center_u = pixel2uv(np.array([center_u]), w=patch_num, h=patch_num // 2, axis=0)[0]
center_boundary_uv = np.array([center_u, center_boundary_v])
center_bottom_uv = np.array([center_u, center_bottom_v])
center_top_uv = np.array([center_u, center_top_v])
left_u = center_u - width_u / 2
right_u = center_u + width_u / 2
left_u = 1 + left_u if left_u < 0 else left_u
right_u = right_u - 1 if right_u > 1 else right_u
pixel_u = uv2pixel(np.array([left_u, right_u]), w=patch_num, h=patch_num // 2, axis=0)
left_pixel_u = pixel_u[0]
right_pixel_u = pixel_u[1]
left_boundary_v = depth2uv(depth[left_pixel_u:left_pixel_u + 1])[0, 1]
right_boundary_v = depth2uv(depth[right_pixel_u:right_pixel_u + 1])[0, 1]
left_boundary_uv = np.array([left_u, left_boundary_v])
right_boundary_uv = np.array([right_u, right_boundary_v])
xyz = uv2xyz(np.array([left_boundary_uv, right_boundary_uv, center_boundary_uv]))
left_boundary_xyz = xyz[0]
right_boundary_xyz = xyz[1]
# need align
center_boundary_xyz = xyz[2]
center_bottom_xyz = uv2xyz(np.array([center_bottom_uv]))[0]
center_top_xyz = uv2xyz(np.array([center_top_uv]))[0]
center_boundary_norm = np.linalg.norm(center_boundary_xyz[::2])
center_bottom_norm = np.linalg.norm(center_bottom_xyz[::2])
center_top_norm = np.linalg.norm(center_top_xyz[::2])
center_bottom_xyz = center_bottom_xyz * center_boundary_norm / center_bottom_norm
center_top_xyz = center_top_xyz * center_boundary_norm / center_top_norm
left_bottom_xyz = left_boundary_xyz.copy()
left_bottom_xyz[1] = center_bottom_xyz[1]
right_bottom_xyz = right_boundary_xyz.copy()
right_bottom_xyz[1] = center_bottom_xyz[1]
left_top_xyz = left_boundary_xyz.copy()
left_top_xyz[1] = center_top_xyz[1]
right_top_xyz = right_boundary_xyz.copy()
right_top_xyz[1] = center_top_xyz[1]
uv = xyz2uv(np.array([left_bottom_xyz, right_bottom_xyz, left_top_xyz, right_top_xyz]))
left_bottom_uv = uv[0]
right_bottom_uv = uv[1]
left_top_uv = uv[2]
right_top_uv = uv[3]
return [left_bottom_uv, right_bottom_uv, left_top_uv, right_top_uv], \
[left_bottom_xyz, right_bottom_xyz, left_top_xyz, right_top_xyz]
def layout2depth(boundaries: List[np.array], return_mask=False, show=False, camera_height=1.6):
"""
:param camera_height:
:param boundaries: [[[u_f1, v_f2], [u_f2, v_f2],...], [[u_c1, v_c2], [u_c2, v_c2]]]
:param return_mask:
:param show:
:return:
"""
# code from HorizonNet: https://github.com/sunset1995/HorizonNet/blob/master/eval_general.py
w = len(boundaries[0])
h = w//2
# Convert corners to per-column boundary first
# Up -pi/2, Down pi/2
vf = uv2lonlat(boundaries[0])
vc = uv2lonlat(boundaries[1])
vc = vc[None, :, 1] # [1, w]
vf = vf[None, :, 1] # [1, w]
assert (vc > 0).sum() == 0
assert (vf < 0).sum() == 0
# Per-pixel v coordinate (vertical angle)
vs = ((np.arange(h) + 0.5) / h - 0.5) * np.pi
vs = np.repeat(vs[:, None], w, axis=1) # [h, w]
# Floor-plane to depth
floor_h = camera_height
floor_d = np.abs(floor_h / np.sin(vs))
# wall to camera distance on horizontal plane at cross camera center
cs = floor_h / np.tan(vf)
# Ceiling-plane to depth
ceil_h = np.abs(cs * np.tan(vc)) # [1, w]
ceil_d = np.abs(ceil_h / np.sin(vs)) # [h, w]
# Wall to depth
wall_d = np.abs(cs / np.cos(vs)) # [h, w]
# Recover layout depth
floor_mask = (vs > vf)
ceil_mask = (vs < vc)
wall_mask = (~floor_mask) & (~ceil_mask)
depth = np.zeros([h, w], np.float32) # [h, w]
depth[floor_mask] = floor_d[floor_mask]
depth[ceil_mask] = ceil_d[ceil_mask]
depth[wall_mask] = wall_d[wall_mask]
assert (depth == 0).sum() == 0
if return_mask:
return depth, floor_mask, ceil_mask, wall_mask
if show:
import matplotlib.pyplot as plt
plt.imshow(depth)
plt.show()
return depth
def calc_rotation(corners: np.ndarray):
xz = uv2xyz(corners)[..., 0::2]
max_norm = -1
max_v = None
for i in range(len(xz)):
p_c = xz[i]
p_n = xz[(i + 1) % len(xz)]
v_cn = p_n - p_c
v_norm = np.linalg.norm(v_cn)
if v_norm > max_norm:
max_norm = v_norm
max_v = v_cn
# v<-----------|o
# | | |
# | ----|----z |
# | | |
# | x \|/
# |------------u
# It is required that the vector be aligned on the x-axis, z equals y, and x is still x.
# In floorplan, x is displayed as the x-coordinate and z as the y-coordinate
rotation = np.arctan2(max_v[1], max_v[0])
return rotation
if __name__ == '__main__':
corners = np.array([[0.2, 0.7],
[0.4, 0.7],
[0.3, 0.6],
[0.6, 0.6],
[0.8, 0.7]])
get_heat_map(u=corners[..., 0], show=True, sigma=2, width=15)
pass
|