File size: 14,447 Bytes
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4adcb2
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
""" 
@date: 2021/06/19
@description:
"""
import math
import functools

from scipy import stats
from scipy.ndimage.filters import maximum_filter
import numpy as np
from typing import List
from utils.conversion import uv2xyz, xyz2uv, depth2xyz, uv2pixel, depth2uv, pixel2uv, xyz2pixel, uv2lonlat
from utils.visibility_polygon import calc_visible_polygon


def connect_corners_uv(uv1: np.ndarray, uv2: np.ndarray, length=256) -> np.ndarray:
    """
    :param uv1: [u, v]
    :param uv2: [u, v]
    :param length: Fix the total length in pixel coordinates
    :return:
    """
    # why -0.5? Check out the uv2Pixel function
    p_u1 = uv1[0] * length - 0.5
    p_u2 = uv2[0] * length - 0.5

    if abs(p_u1 - p_u2) < length / 2:
        start = np.ceil(min(p_u1, p_u2))
        p = max(p_u1, p_u2)
        end = np.floor(p)
        if end == np.ceil(p):
            end = end - 1
    else:
        start = np.ceil(max(p_u1, p_u2))
        p = min(p_u1, p_u2) + length
        end = np.floor(p)
        if end == np.ceil(p):
            end = end - 1
    p_us = (np.arange(start, end + 1) % length).astype(np.float64)
    if len(p_us) == 0:
        return None
    us = (p_us + 0.5) / length  # why +0.5? Check out the uv2Pixel function

    plan_y = boundary_type(np.array([uv1, uv2]))
    xyz1 = uv2xyz(np.array(uv1), plan_y)
    xyz2 = uv2xyz(np.array(uv2), plan_y)
    x1 = xyz1[0]
    z1 = xyz1[2]
    x2 = xyz2[0]
    z2 = xyz2[2]

    d_x = x2 - x1
    d_z = z2 - z1

    lon_s = (us - 0.5) * 2 * np.pi
    k = np.tan(lon_s)
    ps = (k * z1 - x1) / (d_x - k * d_z)
    cs = np.sqrt((z1 + ps * d_z) ** 2 + (x1 + ps * d_x) ** 2)

    lats = np.arctan2(plan_y, cs)
    vs = lats / np.pi + 0.5
    uv = np.stack([us, vs], axis=-1)

    if start == end:
        return uv[0:1]
    return uv


def connect_corners_xyz(uv1: np.ndarray, uv2: np.ndarray, step=0.01) -> np.ndarray:
    """
    :param uv1: [u, v]
    :param uv2: [u, v]
    :param step: Fixed step size in xyz coordinates
    :return:
    """
    plan_y = boundary_type(np.array([uv1, uv2]))
    xyz1 = uv2xyz(np.array(uv1), plan_y)
    xyz2 = uv2xyz(np.array(uv2), plan_y)

    vec = xyz2 - xyz1
    norm = np.linalg.norm(vec, ord=2)
    direct = vec / norm
    xyz = np.array([xyz1 + direct * dis for dis in np.linspace(0, norm, int(norm / step))])
    if len(xyz) == 0:
        xyz = np.array([xyz2])
    uv = xyz2uv(xyz)
    return uv


def connect_corners(uv1: np.ndarray, uv2: np.ndarray, step=0.01, length=None) -> np.ndarray:
    """
    :param uv1: [u, v]
    :param uv2: [u, v]
    :param step:
    :param length:
    :return: [[u1, v1], [u2, v2]....] if length!=None,length of return result = length
    """
    if length is not None:
        uv = connect_corners_uv(uv1, uv2, length)
    elif step is not None:
        uv = connect_corners_xyz(uv1, uv2, step)
    else:
        uv = np.array([uv1])
    return uv


def visibility_corners(corners):
    plan_y = boundary_type(corners)
    xyz = uv2xyz(corners, plan_y)
    xz = xyz[:, ::2]
    xz = calc_visible_polygon(center=np.array([0, 0]), polygon=xz, show=False)
    xyz = np.insert(xz, 1, plan_y, axis=1)
    output = xyz2uv(xyz).astype(np.float32)
    return output


def corners2boundary(corners: np.ndarray, step=0.01, length=None, visible=True) -> np.ndarray:
    """
    When there is occlusion, even if the length is fixed, the final output length may be greater than the given length,
     which is more defined as the fixed step size under UV
    :param length:
    :param step:
    :param corners: [[u1, v1], [u2, v2]....]
    :param visible:
    :return:  [[u1, v1], [u2, v2]....] if length!=None,length of return result = length
    """
    assert step is not None or length is not None, "the step and length parameters cannot be null at the same time"
    if len(corners) < 3:
        return corners

    if visible:
        corners = visibility_corners(corners)

    n_con = len(corners)
    boundary = None
    for j in range(n_con):
        uv = connect_corners(corners[j], corners[(j + 1) % n_con], step, length)
        if uv is None:
            continue
        if boundary is None:
            boundary = uv
        else:
            boundary = np.concatenate((boundary, uv))
    boundary = np.roll(boundary, -boundary.argmin(axis=0)[0], axis=0)

    output_polygon = []
    for i, p in enumerate(boundary):
        q = boundary[(i + 1) % len(boundary)]
        if int(p[0] * 10000) == int(q[0] * 10000):
            continue
        output_polygon.append(p)
    output_polygon = np.array(output_polygon, dtype=np.float32)
    return output_polygon


def corners2boundaries(ratio: float, corners_xyz: np.ndarray = None, corners_uv: np.ndarray = None, step=0.01,
                       length=None, visible=True):
    """
    When both step and length are None, corners are also returned
    :param ratio:
    :param corners_xyz:
    :param corners_uv:
    :param step:
    :param length:
    :param visible:
    :return: floor_boundary, ceil_boundary
    """
    if corners_xyz is None:
        plan_y = boundary_type(corners_uv)
        xyz = uv2xyz(corners_uv, plan_y)
        floor_xyz = xyz.copy()
        ceil_xyz = xyz.copy()
        if plan_y > 0:
            ceil_xyz[:, 1] *= -ratio
        else:
            floor_xyz[:, 1] /= -ratio
    else:
        floor_xyz = corners_xyz.copy()
        ceil_xyz = corners_xyz.copy()
        if corners_xyz[0][1] > 0:
            ceil_xyz[:, 1] *= -ratio
        else:
            floor_xyz[:, 1] /= -ratio

    floor_uv = xyz2uv(floor_xyz)
    ceil_uv = xyz2uv(ceil_xyz)
    if step is None and length is None:
        return floor_uv, ceil_uv

    floor_boundary = corners2boundary(floor_uv, step, length, visible)
    ceil_boundary = corners2boundary(ceil_uv, step, length, visible)
    return floor_boundary, ceil_boundary


def depth2boundary(depth: np.array, step=0.01, length=None,):
    xyz = depth2xyz(depth)
    uv = xyz2uv(xyz)
    return corners2boundary(uv, step, length, visible=False)


def depth2boundaries(ratio: float, depth: np.array, step=0.01, length=None,):
    """

    :param ratio:
    :param depth:
    :param step:
    :param length:
    :return: floor_boundary, ceil_boundary
    """
    xyz = depth2xyz(depth)
    return corners2boundaries(ratio, corners_xyz=xyz, step=step, length=length, visible=False)


def boundary_type(corners: np.ndarray) -> int:
    """
    Returns the boundary type that also represents the projection plane
    :param corners:
    :return:
    """
    if is_ceil_boundary(corners):
        plan_y = -1
    elif is_floor_boundary(corners):
        plan_y = 1
    else:
        # An intersection occurs and an exception is considered
        assert False, 'corners error!'
    return plan_y


def is_normal_layout(boundaries: List[np.array]):
    if len(boundaries) != 2:
        print("boundaries length must be 2!")
        return False

    if boundary_type(boundaries[0]) != -1:
        print("ceil boundary error!")
        return False

    if boundary_type(boundaries[1]) != 1:
        print("floor boundary error!")
        return False
    return True


def is_ceil_boundary(corners: np.ndarray) -> bool:
    m = corners[..., 1].max()
    return m < 0.5


def is_floor_boundary(corners: np.ndarray) -> bool:
    m = corners[..., 1].min()
    return m > 0.5


@functools.lru_cache()
def get_gauss_map(sigma=1.5, width=5):
    x = np.arange(width*2 + 1) - width
    y = stats.norm(0, sigma).pdf(x)
    y = y / y.max()
    return y


def get_heat_map(u_s, patch_num=256, sigma=2, window_width=15, show=False):
    """
    :param window_width:
    :param sigma:
    :param u_s: [u1, u2, u3, ...]
    :param patch_num
    :param show
    :return:
    """
    pixel_us = uv2pixel(u_s, w=patch_num, axis=0)
    gauss_map = get_gauss_map(sigma, window_width)
    heat_map_all = []
    for u in pixel_us:
        heat_map = np.zeros(patch_num, dtype=np.float32)
        left = u-window_width
        right = u+window_width+1

        offset = 0
        if left < 0:
            offset = left
        elif right > patch_num:
            offset = right - patch_num

        left = left - offset
        right = right - offset
        heat_map[left:right] = gauss_map
        if offset != 0:
            heat_map = np.roll(heat_map, offset)
        heat_map_all.append(heat_map)

    heat_map_all = np.array(heat_map_all).max(axis=0)
    if show:
        import matplotlib.pyplot as plt
        plt.imshow(heat_map_all[None].repeat(50, axis=0))
        plt.show()
    return heat_map_all


def find_peaks(signal, size=15*2+1, min_v=0.05, N=None):
    # code from HorizonNet: https://github.com/sunset1995/HorizonNet/blob/master/inference.py
    max_v = maximum_filter(signal, size=size, mode='wrap')
    pk_loc = np.where(max_v == signal)[0]
    pk_loc = pk_loc[signal[pk_loc] > min_v]
    if N is not None:
        order = np.argsort(-signal[pk_loc])
        pk_loc = pk_loc[order[:N]]
        pk_loc = pk_loc[np.argsort(pk_loc)]
    return pk_loc, signal[pk_loc]


def get_object_cor(depth, size, center_u, patch_num=256):
    width_u = size[0, center_u]
    height_v = size[1, center_u]
    boundary_v = size[2, center_u]

    center_boundary_v = depth2uv(depth[center_u:center_u + 1])[0, 1]
    center_bottom_v = center_boundary_v - boundary_v
    center_top_v = center_bottom_v - height_v

    base_v = center_boundary_v - 0.5
    assert base_v > 0

    center_u = pixel2uv(np.array([center_u]), w=patch_num, h=patch_num // 2, axis=0)[0]

    center_boundary_uv = np.array([center_u, center_boundary_v])
    center_bottom_uv = np.array([center_u, center_bottom_v])
    center_top_uv = np.array([center_u, center_top_v])

    left_u = center_u - width_u / 2
    right_u = center_u + width_u / 2

    left_u = 1 + left_u if left_u < 0 else left_u
    right_u = right_u - 1 if right_u > 1 else right_u

    pixel_u = uv2pixel(np.array([left_u, right_u]), w=patch_num, h=patch_num // 2, axis=0)
    left_pixel_u = pixel_u[0]
    right_pixel_u = pixel_u[1]

    left_boundary_v = depth2uv(depth[left_pixel_u:left_pixel_u + 1])[0, 1]
    right_boundary_v = depth2uv(depth[right_pixel_u:right_pixel_u + 1])[0, 1]

    left_boundary_uv = np.array([left_u, left_boundary_v])
    right_boundary_uv = np.array([right_u, right_boundary_v])

    xyz = uv2xyz(np.array([left_boundary_uv, right_boundary_uv, center_boundary_uv]))
    left_boundary_xyz = xyz[0]
    right_boundary_xyz = xyz[1]

    # need align
    center_boundary_xyz = xyz[2]
    center_bottom_xyz = uv2xyz(np.array([center_bottom_uv]))[0]
    center_top_xyz = uv2xyz(np.array([center_top_uv]))[0]
    center_boundary_norm = np.linalg.norm(center_boundary_xyz[::2])
    center_bottom_norm = np.linalg.norm(center_bottom_xyz[::2])
    center_top_norm = np.linalg.norm(center_top_xyz[::2])
    center_bottom_xyz = center_bottom_xyz * center_boundary_norm / center_bottom_norm
    center_top_xyz = center_top_xyz * center_boundary_norm / center_top_norm

    left_bottom_xyz = left_boundary_xyz.copy()
    left_bottom_xyz[1] = center_bottom_xyz[1]
    right_bottom_xyz = right_boundary_xyz.copy()
    right_bottom_xyz[1] = center_bottom_xyz[1]

    left_top_xyz = left_boundary_xyz.copy()
    left_top_xyz[1] = center_top_xyz[1]
    right_top_xyz = right_boundary_xyz.copy()
    right_top_xyz[1] = center_top_xyz[1]

    uv = xyz2uv(np.array([left_bottom_xyz, right_bottom_xyz, left_top_xyz, right_top_xyz]))
    left_bottom_uv = uv[0]
    right_bottom_uv = uv[1]
    left_top_uv = uv[2]
    right_top_uv = uv[3]

    return [left_bottom_uv, right_bottom_uv, left_top_uv, right_top_uv], \
           [left_bottom_xyz, right_bottom_xyz, left_top_xyz, right_top_xyz]


def layout2depth(boundaries: List[np.array], return_mask=False, show=False, camera_height=1.6):
    """

    :param camera_height:
    :param boundaries: [[[u_f1, v_f2], [u_f2, v_f2],...], [[u_c1, v_c2], [u_c2, v_c2]]]
    :param return_mask:
    :param show:
    :return:
    """
    # code from HorizonNet: https://github.com/sunset1995/HorizonNet/blob/master/eval_general.py

    w = len(boundaries[0])
    h = w//2
    # Convert corners to per-column boundary first
    # Up -pi/2,  Down pi/2
    vf = uv2lonlat(boundaries[0])
    vc = uv2lonlat(boundaries[1])
    vc = vc[None, :, 1]  # [1, w]
    vf = vf[None, :, 1]  # [1, w]
    assert (vc > 0).sum() == 0
    assert (vf < 0).sum() == 0

    # Per-pixel v coordinate (vertical angle)
    vs = ((np.arange(h) + 0.5) / h - 0.5) * np.pi
    vs = np.repeat(vs[:, None], w, axis=1)  # [h, w]

    # Floor-plane to depth
    floor_h = camera_height
    floor_d = np.abs(floor_h / np.sin(vs))

    # wall to camera distance on horizontal plane at cross camera center
    cs = floor_h / np.tan(vf)

    # Ceiling-plane to depth
    ceil_h = np.abs(cs * np.tan(vc))  # [1, w]
    ceil_d = np.abs(ceil_h / np.sin(vs))  # [h, w]

    # Wall to depth
    wall_d = np.abs(cs / np.cos(vs))  # [h, w]

    # Recover layout depth
    floor_mask = (vs > vf)
    ceil_mask = (vs < vc)
    wall_mask = (~floor_mask) & (~ceil_mask)
    depth = np.zeros([h, w], np.float32)  # [h, w]
    depth[floor_mask] = floor_d[floor_mask]
    depth[ceil_mask] = ceil_d[ceil_mask]
    depth[wall_mask] = wall_d[wall_mask]

    assert (depth == 0).sum() == 0
    if return_mask:
        return depth, floor_mask, ceil_mask, wall_mask
    if show:
        import matplotlib.pyplot as plt
        plt.imshow(depth)
        plt.show()
    return depth


def calc_rotation(corners: np.ndarray):
    xz = uv2xyz(corners)[..., 0::2]
    max_norm = -1
    max_v = None
    for i in range(len(xz)):
        p_c = xz[i]
        p_n = xz[(i + 1) % len(xz)]
        v_cn = p_n - p_c
        v_norm = np.linalg.norm(v_cn)
        if v_norm > max_norm:
            max_norm = v_norm
            max_v = v_cn

    # v<-----------|o
    # |     |      |
    # | ----|----z |
    # |     |      |
    # |     x     \|/
    # |------------u
    # It is required that the vector be aligned on the x-axis, z equals y, and x is still x.
    # In floorplan, x is displayed as the x-coordinate and z as the y-coordinate
    rotation = np.arctan2(max_v[1], max_v[0])
    return rotation


if __name__ == '__main__':
    corners = np.array([[0.2, 0.7],
                        [0.4, 0.7],
                        [0.3, 0.6],
                        [0.6, 0.6],
                        [0.8, 0.7]])
    get_heat_map(u=corners[..., 0], show=True, sigma=2, width=15)
    pass