File size: 7,964 Bytes
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb05369
88b0dcb
cb05369
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb05369
88b0dcb
cb05369
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
""" 
@Date: 2021/10/06
@description: Use the approach proposed by DuLa-Net
"""
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt

from visualization.floorplan import draw_floorplan


def merge_near(lst, diag):
    group = [[0, ]]
    for i in range(1, len(lst)):
        if lst[i][1] == 0 and lst[i][0] - np.mean(group[-1]) < diag * 0.02:
            group[-1].append(lst[i][0])
        else:
            group.append([lst[i][0], ])
    if len(group) == 1:
        group = [lst[0][0], lst[-1][0]]
    else:
        group = [int(np.mean(x)) for x in group]
    return group


def fit_layout(floor_xz, need_cube=False, show=False, block_eps=0.2):
    show_radius = np.linalg.norm(floor_xz, axis=-1).max()
    side_l = 512
    floorplan = draw_floorplan(xz=floor_xz, show_radius=show_radius, show=show, scale=1, side_l=side_l).astype(np.uint8)
    center = np.array([side_l / 2, side_l / 2])
    polys = cv2.findContours(floorplan, 1, 2)
    if isinstance(polys, tuple):
        if len(polys) == 3:
            # opencv 3
            polys = list(polys[1])
        else:
            polys = list(polys[0])
    polys.sort(key=lambda x: cv2.contourArea(x), reverse=True)
    poly = polys[0]
    sub_x, sub_y, w, h = cv2.boundingRect(poly)
    floorplan_sub = floorplan[sub_y:sub_y + h, sub_x:sub_x + w]
    sub_center = center - np.array([sub_x, sub_y])
    polys = cv2.findContours(floorplan_sub, 1, 2)
    if isinstance(polys, tuple):
        if len(polys) == 3:
            polys = list(polys[1])
        else:
            polys = list(polys[0])
    poly = polys[0]
    epsilon = 0.005 * cv2.arcLength(poly, True)
    poly = cv2.approxPolyDP(poly, epsilon, True)

    x_lst = [[0, 0], ]
    y_lst = [[0, 0], ]

    ans = np.zeros((floorplan_sub.shape[0], floorplan_sub.shape[1]))

    for i in range(len(poly)):
        p1 = poly[i][0]
        p2 = poly[(i + 1) % len(poly)][0]
        # We added occlusion detection
        cp1 = p1 - sub_center
        cp2 = p2 - sub_center
        p12 = p2 - p1
        l1 = np.linalg.norm(cp1)
        l2 = np.linalg.norm(cp2)
        l3 = np.linalg.norm(p12)
        # We added occlusion detection
        is_block1 = abs(np.cross(cp1/l1, cp2/l2)) < block_eps
        is_block2 = abs(np.cross(cp2/l2, p12/l3)) < block_eps*2
        is_block = is_block1 and is_block2

        if (p2[0] - p1[0]) == 0:
            slope = 10
        else:
            slope = abs((p2[1] - p1[1]) / (p2[0] - p1[0]))

        if is_block:
            s = p1[1] if l1 < l2 else p2[1]
            y_lst.append([s, 1])
            s = p1[0] if l1 < l2 else p2[0]
            x_lst.append([s, 1])

            left = p1[0] if p1[0] < p2[0] else p2[0]
            right = p1[0] if p1[0] > p2[0] else p2[0]
            top = p1[1] if p1[1] < p2[1] else p2[1]
            bottom = p1[1] if p1[1] > p2[1] else p2[1]
            sample = floorplan_sub[top:bottom, left:right]
            score = 0 if sample.size == 0 else sample.mean()
            if score >= 0.3:
                ans[top:bottom, left:right] = 1

        else:
            if slope <= 1:
                s = int((p1[1] + p2[1]) / 2)
                y_lst.append([s, 0])
            elif slope > 1:
                s = int((p1[0] + p2[0]) / 2)
                x_lst.append([s, 0])

    debug_show = False
    if debug_show:
        plt.figure(dpi=300)
        plt.axis('off')
        a = cv2.drawMarker(floorplan_sub.copy()*0.5, tuple([floorplan_sub.shape[1] // 2, floorplan_sub.shape[0] // 2]), [1], markerType=0, markerSize=10, thickness=2)
        plt.imshow(cv2.drawContours(a, [poly], 0, 1, 1))
        plt.savefig('src/1.png', bbox_inches='tight', transparent=True, pad_inches=0)
        plt.show()

        plt.figure(dpi=300)
        plt.axis('off')
        a = cv2.drawMarker(ans.copy()*0.5, tuple([floorplan_sub.shape[1] // 2, floorplan_sub.shape[0] // 2]), [1], markerType=0, markerSize=10, thickness=2)
        plt.imshow(cv2.drawContours(a, [poly], 0, 1, 1))
        # plt.show()
        plt.savefig('src/2.png', bbox_inches='tight', transparent=True, pad_inches=0)
        plt.show()

    x_lst.append([floorplan_sub.shape[1], 0])
    y_lst.append([floorplan_sub.shape[0], 0])
    x_lst.sort(key=lambda x: x[0])
    y_lst.sort(key=lambda x: x[0])

    diag = math.sqrt(math.pow(floorplan_sub.shape[1], 2) + math.pow(floorplan_sub.shape[0], 2))
    x_lst = merge_near(x_lst, diag)
    y_lst = merge_near(y_lst, diag)
    if need_cube and len(x_lst) > 2:
        x_lst = [x_lst[0], x_lst[-1]]
    if need_cube and len(y_lst) > 2:
        y_lst = [y_lst[0], y_lst[-1]]

    for i in range(len(x_lst) - 1):
        for j in range(len(y_lst) - 1):
            sample = floorplan_sub[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]]
            score = 0 if sample.size == 0 else sample.mean()
            if score >= 0.3:
                ans[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]] = 1

    if debug_show:
        plt.figure(dpi=300)
        plt.axis('off')
        a = cv2.drawMarker(ans.copy() * 0.5, tuple([floorplan_sub.shape[1] // 2, floorplan_sub.shape[0] // 2]), [1],
                           markerType=0, markerSize=10, thickness=2)
        plt.imshow(cv2.drawContours(a, [poly], 0, 1, 1))
        # plt.show()
        plt.savefig('src/3.png', bbox_inches='tight', transparent=True, pad_inches=0)
        plt.show()

    pred = np.uint8(ans)
    pred_polys = cv2.findContours(pred, 1, 3)
    if isinstance(pred_polys, tuple):
        if len(pred_polys) == 3:
            pred_polys = list(pred_polys[1])
        else:
            pred_polys = list(pred_polys[0])

    pred_polys.sort(key=lambda x: cv2.contourArea(x), reverse=True)
    pred_polys = pred_polys[0]

    if debug_show:
        plt.figure(dpi=300)
        plt.axis('off')
        a = cv2.drawMarker(ans.copy() * 0.5, tuple([floorplan_sub.shape[1] // 2, floorplan_sub.shape[0] // 2]), [1],
                           markerType=0, markerSize=10, thickness=2)
        a = cv2.drawContours(a, [poly], 0, 0.8, 1)
        a = cv2.drawContours(a, [pred_polys], 0, 1, 1)
        plt.imshow(a)
        # plt.show()
        plt.savefig('src/4.png', bbox_inches='tight', transparent=True, pad_inches=0)
        plt.show()

    polygon = [(p[0][1], p[0][0]) for p in pred_polys[::-1]]

    v = np.array([p[0] + sub_y for p in polygon])
    u = np.array([p[1] + sub_x for p in polygon])
    #     side_l
    # v<-----------|o
    # |     |      |
    # | ----|----z |   side_l
    # |     |      |
    # |     x     \|/
    # |------------u
    side_l = floorplan.shape[0]
    pred_xz = np.concatenate((u[:, np.newaxis] - side_l // 2, side_l // 2 - v[:, np.newaxis]), axis=1)

    pred_xz = pred_xz * show_radius / (side_l // 2)
    if show:
        draw_floorplan(pred_xz, show_radius=show_radius, show=show)

    show_process = False
    if show_process:
        img = np.zeros((floorplan_sub.shape[0], floorplan_sub.shape[1], 3))
        for x in x_lst:
            cv2.line(img, (x, 0), (x, floorplan_sub.shape[0]), (0, 255, 0), 1)
        for y in y_lst:
            cv2.line(img, (0, y), (floorplan_sub.shape[1], y), (255, 0, 0), 1)

        fig = plt.figure()
        plt.axis('off')
        ax1 = fig.add_subplot(2, 2, 1)
        ax1.imshow(floorplan)
        ax3 = fig.add_subplot(2, 2, 2)
        ax3.imshow(floorplan_sub)
        ax4 = fig.add_subplot(2, 2, 3)
        ax4.imshow(img)
        ax5 = fig.add_subplot(2, 2, 4)
        ax5.imshow(ans)
        plt.show()

    return pred_xz


if __name__ == '__main__':
    from utils.conversion import uv2xyz

    pano_img = np.zeros([512, 1024, 3])
    corners = np.array([[0.1, 0.7],
                        [0.4, 0.7],
                        [0.3, 0.6],
                        [0.6, 0.6],
                        [0.8, 0.7]])
    xz = uv2xyz(corners)[..., ::2]
    draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)

    xz = fit_layout(xz)
    draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)