|
from models.modules.transformer_modules import * |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, dim, depth, heads, win_size, dim_head, mlp_dim, |
|
dropout=0., patch_num=None, ape=None, rpe=None, rpe_pos=1): |
|
super().__init__() |
|
|
|
self.absolute_pos_embed = None if patch_num is None or ape is None else AbsolutePosition(dim, dropout, |
|
patch_num, ape) |
|
self.pos_dropout = nn.Dropout(dropout) |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout, patch_num=patch_num, |
|
rpe=rpe, rpe_pos=rpe_pos)), |
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)) |
|
])) |
|
|
|
def forward(self, x): |
|
if self.absolute_pos_embed is not None: |
|
x = self.absolute_pos_embed(x) |
|
x = self.pos_dropout(x) |
|
for attn, ff in self.layers: |
|
x = attn(x) + x |
|
x = ff(x) + x |
|
return x |
|
|
|
|
|
if __name__ == '__main__': |
|
token_dim = 1024 |
|
toke_len = 256 |
|
|
|
transformer = Transformer(dim=token_dim, depth=6, heads=16, |
|
dim_head=64, mlp_dim=2048, dropout=0.1, |
|
patch_num=256, ape='lr_parameter', rpe='lr_parameter_mirror') |
|
|
|
total = sum(p.numel() for p in transformer.parameters()) |
|
trainable = sum(p.numel() for p in transformer.parameters() if p.requires_grad) |
|
print('parameter total:{:,}, trainable:{:,}'.format(total, trainable)) |
|
|
|
input = torch.randn(1, toke_len, token_dim) |
|
output = transformer(input) |
|
print(output.shape) |
|
|