zhigangjiang's picture
no message
88b0dcb
raw
history blame
1.8 kB
from models.modules.transformer_modules import *
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, win_size, dim_head, mlp_dim,
dropout=0., patch_num=None, ape=None, rpe=None, rpe_pos=1):
super().__init__()
self.absolute_pos_embed = None if patch_num is None or ape is None else AbsolutePosition(dim, dropout,
patch_num, ape)
self.pos_dropout = nn.Dropout(dropout)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout, patch_num=patch_num,
rpe=rpe, rpe_pos=rpe_pos)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
]))
def forward(self, x):
if self.absolute_pos_embed is not None:
x = self.absolute_pos_embed(x)
x = self.pos_dropout(x)
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
if __name__ == '__main__':
token_dim = 1024
toke_len = 256
transformer = Transformer(dim=token_dim, depth=6, heads=16,
dim_head=64, mlp_dim=2048, dropout=0.1,
patch_num=256, ape='lr_parameter', rpe='lr_parameter_mirror')
total = sum(p.numel() for p in transformer.parameters())
trainable = sum(p.numel() for p in transformer.parameters() if p.requires_grad)
print('parameter total:{:,}, trainable:{:,}'.format(total, trainable))
input = torch.randn(1, toke_len, token_dim)
output = transformer(input)
print(output.shape)