""" @date: 2021/06/19 @description: Specification of 4 coordinate systems: Pixel coordinates (used in panoramic images), the range is related to the image size, generally converted to UV coordinates first, the first is horizontal coordinates, increasing to the right, the second is column coordinates, increasing down Uv coordinates (used in panoramic images), the range is [0~1], the upper left corner is the origin, u is the abscissa and increases to the right, V is the column coordinate and increases to the right Longitude and latitude coordinates (spherical), the range of longitude lon is [-pi~ PI], and the range of dimension is [-pi/2~ PI /2]. The center of the panorama is the origin, and the longitude increases to the right and the dimension increases to the down Xyz coordinate (used in 3-dimensional space, of course, it can also represent longitude and latitude coordinates on the sphere). If on the sphere, the coordinate mode length is 1, when y is projected to the height of the camera, the real position information of space points will be obtained Correspondence between longitude and latitude coordinates and xyz coordinates: | -pi/2 | lef _ _ _ _ _ |_ _ _ _ _ -pi / | \ pi | - - - - - -\ - z 0 mid right \_ _ _ _ _ /_|_ _ _ _ _ _/ / | / | x/ | y pi/2 """ import numpy as np import torch import functools @functools.lru_cache() def get_u(w, is_np, b=None): u = pixel2uv(np.array(range(w)) if is_np else torch.arange(0, w), w=w, axis=0) if b is not None: u = u[np.newaxis].repeat(b) if is_np else u.repeat(b, 1) return u @functools.lru_cache() def get_lon(w, is_np, b=None): lon = pixel2lonlat(np.array(range(w)) if is_np else torch.arange(0, w), w=w, axis=0) if b is not None: lon = lon[np.newaxis].repeat(b, axis=0) if is_np else lon.repeat(b, 1) return lon def pixel2uv(pixel, w=1024, h=512, axis=None): pixel = pixel.astype(np.float64) if isinstance(pixel, np.ndarray) else pixel.float() # +0.5 will make left/right and up/down coordinates symmetric if axis is None: u = (pixel[..., 0:1] + 0.5) / w v = (pixel[..., 1:] + 0.5) / h elif axis == 0: u = (pixel + 0.5) / (w * 1.0) return u elif axis == 1: v = (pixel + 0.5) / (h * 1.0) return v else: assert False, "axis error" lst = [u, v] uv = np.concatenate(lst, axis=-1) if isinstance(pixel, np.ndarray) else torch.cat(lst, dim=-1) return uv def pixel2lonlat(pixel, w=1024, h=512, axis=None): uv = pixel2uv(pixel, w, h, axis) lonlat = uv2lonlat(uv, axis) return lonlat def pixel2xyz(pixel, w=1024, h=512): lonlat = pixel2lonlat(pixel, w, h) xyz = lonlat2xyz(lonlat) return xyz def uv2lonlat(uv, axis=None): if axis is None: lon = (uv[..., 0:1] - 0.5) * 2 * np.pi lat = (uv[..., 1:] - 0.5) * np.pi elif axis == 0: lon = (uv - 0.5) * 2 * np.pi return lon elif axis == 1: lat = (uv - 0.5) * np.pi return lat else: assert False, "axis error" lst = [lon, lat] lonlat = np.concatenate(lst, axis=-1) if isinstance(uv, np.ndarray) else torch.cat(lst, dim=-1) return lonlat def uv2xyz(uv, plan_y=None, spherical=False): lonlat = uv2lonlat(uv) xyz = lonlat2xyz(lonlat) if spherical: # Projection onto the sphere return xyz if plan_y is None: from utils.boundary import boundary_type plan_y = boundary_type(uv) # Projection onto the specified plane xyz = xyz * (plan_y / xyz[..., 1])[..., None] return xyz def lonlat2xyz(lonlat, plan_y=None): lon = lonlat[..., 0:1] lat = lonlat[..., 1:] cos = np.cos if isinstance(lonlat, np.ndarray) else torch.cos sin = np.sin if isinstance(lonlat, np.ndarray) else torch.sin x = cos(lat) * sin(lon) y = sin(lat) z = cos(lat) * cos(lon) lst = [x, y, z] xyz = np.concatenate(lst, axis=-1) if isinstance(lonlat, np.ndarray) else torch.cat(lst, dim=-1) if plan_y is not None: xyz = xyz * (plan_y / xyz[..., 1])[..., None] return xyz ##################### def xyz2lonlat(xyz): atan2 = np.arctan2 if isinstance(xyz, np.ndarray) else torch.atan2 asin = np.arcsin if isinstance(xyz, np.ndarray) else torch.asin norm = np.linalg.norm(xyz, axis=-1) if isinstance(xyz, np.ndarray) else torch.norm(xyz, p=2, dim=-1) xyz_norm = xyz / norm[..., None] x = xyz_norm[..., 0:1] y = xyz_norm[..., 1:2] z = xyz_norm[..., 2:] lon = atan2(x, z) lat = asin(y) lst = [lon, lat] lonlat = np.concatenate(lst, axis=-1) if isinstance(xyz, np.ndarray) else torch.cat(lst, dim=-1) return lonlat def xyz2uv(xyz): lonlat = xyz2lonlat(xyz) uv = lonlat2uv(lonlat) return uv def xyz2pixel(xyz, w=1024, h=512): uv = xyz2uv(xyz) pixel = uv2pixel(uv, w, h) return pixel def lonlat2uv(lonlat, axis=None): if axis is None: u = lonlat[..., 0:1] / (2 * np.pi) + 0.5 v = lonlat[..., 1:] / np.pi + 0.5 elif axis == 0: u = lonlat / (2 * np.pi) + 0.5 return u elif axis == 1: v = lonlat / np.pi + 0.5 return v else: assert False, "axis error" lst = [u, v] uv = np.concatenate(lst, axis=-1) if isinstance(lonlat, np.ndarray) else torch.cat(lst, dim=-1) return uv def lonlat2pixel(lonlat, w=1024, h=512, axis=None, need_round=True): uv = lonlat2uv(lonlat, axis) pixel = uv2pixel(uv, w, h, axis, need_round) return pixel def uv2pixel(uv, w=1024, h=512, axis=None, need_round=True): """ :param uv: [[u1, v1], [u2, v2] ...] :param w: width of panorama image :param h: height of panorama image :param axis: sometimes the input data is only u(axis =0) or only v(axis=1) :param need_round: :return: """ if axis is None: pu = uv[..., 0:1] * w - 0.5 pv = uv[..., 1:] * h - 0.5 elif axis == 0: pu = uv * w - 0.5 if need_round: pu = pu.round().astype(np.int) if isinstance(uv, np.ndarray) else pu.round().int() return pu elif axis == 1: pv = uv * h - 0.5 if need_round: pv = pv.round().astype(np.int) if isinstance(uv, np.ndarray) else pv.round().int() return pv else: assert False, "axis error" lst = [pu, pv] if need_round: pixel = np.concatenate(lst, axis=-1).round().astype(np.int) if isinstance(uv, np.ndarray) else torch.cat(lst, dim=-1).round().int() else: pixel = np.concatenate(lst, axis=-1) if isinstance(uv, np.ndarray) else torch.cat(lst, dim=-1) pixel[..., 0] = pixel[..., 0] % w pixel[..., 1] = pixel[..., 1] % h return pixel ##################### def xyz2depth(xyz, plan_y=1): """ :param xyz: :param plan_y: :return: """ xyz = xyz * (plan_y / xyz[..., 1])[..., None] xz = xyz[..., ::2] depth = np.linalg.norm(xz, axis=-1) if isinstance(xz, np.ndarray) else torch.norm(xz, dim=-1) return depth def uv2depth(uv, plan_y=None): if plan_y is None: from utils.boundary import boundary_type plan_y = boundary_type(uv) xyz = uv2xyz(uv, plan_y) depth = xyz2depth(xyz, plan_y) return depth def lonlat2depth(lonlat, plan_y=None): if plan_y is None: from utils.boundary import boundary_type plan_y = boundary_type(lonlat2uv(lonlat)) xyz = lonlat2xyz(lonlat, plan_y) depth = xyz2depth(xyz, plan_y) return depth def depth2xyz(depth, plan_y=1): """ :param depth: [patch_num] or [b, patch_num] :param plan_y: :return: """ is_np = isinstance(depth, np.ndarray) w = depth.shape[-1] lon = get_lon(w, is_np, b=depth.shape[0] if len(depth.shape) == 2 else None) if not is_np: lon = lon.to(depth.device) cos = np.cos if is_np else torch.cos sin = np.sin if is_np else torch.sin # polar covert to cartesian if len(depth.shape) == 2: b = depth.shape[0] xyz = np.zeros((b, w, 3)) if is_np else torch.zeros((b, w, 3)) else: xyz = np.zeros((w, 3)) if is_np else torch.zeros((w, 3)) if not is_np: xyz = xyz.to(depth.device) xyz[..., 0] = depth * sin(lon) xyz[..., 1] = plan_y xyz[..., 2] = depth * cos(lon) return xyz def depth2uv(depth, plan_y=1): xyz = depth2xyz(depth, plan_y) uv = xyz2uv(xyz) return uv def depth2pixel(depth, w=1024, h=512, need_round=True, plan_y=1): uv = depth2uv(depth, plan_y) pixel = uv2pixel(uv, w, h, need_round=need_round) return pixel if __name__ == '__main__': a = np.array([[0.5, 1, 0.5]]) a = xyz2pixel(a) print(a) if __name__ == '__main__1': np.set_printoptions(suppress=True) a = np.array([[0, 0], [1023, 511]]) a = pixel2xyz(a) a = xyz2pixel(a) print(a) ########### a = torch.tensor([[0, 0], [1023, 511]]) a = pixel2xyz(a) a = xyz2pixel(a) print(a) ########### u = np.array([0, 256, 512, 1023]) lon = pixel2lonlat(u, axis=0) u = lonlat2pixel(lon, axis=0) print(u) u = torch.tensor([0, 256, 512, 1023]) lon = pixel2lonlat(u, axis=0) u = lonlat2pixel(lon, axis=0) print(u) ########### v = np.array([0, 256, 511]) lat = pixel2lonlat(v, axis=1) v = lonlat2pixel(lat, axis=1) print(v) v = torch.tensor([0, 256, 511]) lat = pixel2lonlat(v, axis=1) v = lonlat2pixel(lat, axis=1) print(v)