""" @Date: 2021/07/18 @description: """ import os import models import torch.distributed as dist import torch from torch.nn import init from torch.optim import lr_scheduler from utils.time_watch import TimeWatch from models.other.optimizer import build_optimizer from models.other.criterion import build_criterion def build_model(config, logger): name = config.MODEL.NAME w = TimeWatch(f"Build model: {name}", logger) ddp = config.WORLD_SIZE > 1 if ddp: logger.info(f"use ddp") dist.init_process_group("nccl", init_method='tcp://127.0.0.1:23456', rank=config.LOCAL_RANK, world_size=config.WORLD_SIZE) device = config.TRAIN.DEVICE logger.info(f"Creating model: {name} to device:{device}, args:{config.MODEL.ARGS[0]}") net = getattr(models, name) ckpt_dir = os.path.abspath(os.path.join(config.CKPT.DIR, os.pardir)) if config.DEBUG else config.CKPT.DIR if len(config.MODEL.ARGS) != 0: model = net(ckpt_dir=ckpt_dir, **config.MODEL.ARGS[0]) else: model = net(ckpt_dir=ckpt_dir) logger.info(f'model dropout: {model.dropout_d}') model = model.to(device) optimizer = None scheduler = None if config.MODE == 'train': optimizer = build_optimizer(config, model, logger) config.defrost() config.TRAIN.START_EPOCH = model.load(device, logger, optimizer, best=config.MODE != 'train' or not config.TRAIN.RESUME_LAST) config.freeze() if config.MODE == 'train' and len(config.MODEL.FINE_TUNE) > 0: for param in model.parameters(): param.requires_grad = False for layer in config.MODEL.FINE_TUNE: logger.info(f'Fine-tune: {layer}') getattr(model, layer).requires_grad_(requires_grad=True) getattr(model, layer).reset_parameters() model.show_parameter_number(logger) if config.MODE == 'train': if len(config.TRAIN.LR_SCHEDULER.NAME) > 0: if 'last_epoch' not in config.TRAIN.LR_SCHEDULER.ARGS[0].keys(): config.TRAIN.LR_SCHEDULER.ARGS[0]['last_epoch'] = config.TRAIN.START_EPOCH - 1 scheduler = getattr(lr_scheduler, config.TRAIN.LR_SCHEDULER.NAME)(optimizer=optimizer, **config.TRAIN.LR_SCHEDULER.ARGS[0]) logger.info(f"Use scheduler: name:{config.TRAIN.LR_SCHEDULER.NAME} args: {config.TRAIN.LR_SCHEDULER.ARGS[0]}") logger.info(f"Current scheduler last lr: {scheduler.get_last_lr()}") else: scheduler = None if config.AMP_OPT_LEVEL != "O0" and 'cuda' in device: import apex logger.info(f"use amp:{config.AMP_OPT_LEVEL}") model, optimizer = apex.amp.initialize(model, optimizer, opt_level=config.AMP_OPT_LEVEL, verbosity=0) if ddp: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.TRAIN.DEVICE], broadcast_buffers=True) # use rank:0 bn criterion = build_criterion(config, logger) if optimizer is not None: logger.info(f"Finally lr: {optimizer.param_groups[0]['lr']}") return model, optimizer, criterion, scheduler