Spaces:
Sleeping
Sleeping
zhijian12345
commited on
Commit
·
136aa0e
1
Parent(s):
16c601e
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import pipeline
|
3 |
+
from tqdm import tqdm
|
4 |
+
from PIL import Image
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from math import sqrt
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
model_info = """
|
11 |
+
**模型名称**: Google/vit-base-patch16-224
|
12 |
+
**模型介绍**: 本程序根据huggingface上Google开源模型vit,在猫狗图片数据上进行微调,上传一张图片,将会预测其类别并显示结果。模型官网:https://huggingface.co/google/vit-base-patch16-224
|
13 |
+
**程序作者**: 计科三班 王志建、计科三班 罗楷轩
|
14 |
+
**特别支持**: 计科三班 黄成栋
|
15 |
+
"""
|
16 |
+
|
17 |
+
# 加载图像分类模型
|
18 |
+
checkpoint_dir = "./checkpoint/checkpoint-181" # 模型检查点目录
|
19 |
+
classifier = pipeline("image-classification", model=checkpoint_dir) # 创建图像分类器模型
|
20 |
+
vitclassifier = pipeline("image-classification",model="google/vit-base-patch16-224")
|
21 |
+
|
22 |
+
|
23 |
+
demo = gr.Blocks()
|
24 |
+
|
25 |
+
# 定义推理函数
|
26 |
+
def flip_myvit(image):
|
27 |
+
# 图像预处理
|
28 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
29 |
+
# 进行图像分类
|
30 |
+
result = classifier(image)
|
31 |
+
# 返回分类结果
|
32 |
+
text = "{:.3f}%".format(result[0]['score'] * 100)
|
33 |
+
return result[0]['label'],text
|
34 |
+
|
35 |
+
|
36 |
+
def flip_vit(image):
|
37 |
+
# 图像预处理
|
38 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
39 |
+
# 进行图像分类
|
40 |
+
result = vitclassifier(image)
|
41 |
+
# 返回分类结果
|
42 |
+
text = "{:.3f}%".format(result[0]['score'] * 100)
|
43 |
+
return result[0]['label'],text
|
44 |
+
|
45 |
+
with demo:
|
46 |
+
gr.Markdown(model_info)
|
47 |
+
with gr.Tabs():
|
48 |
+
with gr.TabItem("myvit"):
|
49 |
+
myvit_input = gr.Image()
|
50 |
+
myvit_output1 = gr.Textbox(label="预测结果")
|
51 |
+
myvit_output2 = gr.Textbox(label="准确度")
|
52 |
+
myvit_button = gr.Button("开始")
|
53 |
+
with gr.TabItem("vit"):
|
54 |
+
vit_input = gr.Image()
|
55 |
+
vit_output1 = gr.Textbox(label="预测结果")
|
56 |
+
vit_output2 = gr.Textbox(label="准确度")
|
57 |
+
vit_button = gr.Button("开始")
|
58 |
+
|
59 |
+
myvit_button.click(flip_myvit, inputs=myvit_input, outputs=[myvit_output1,myvit_output2])
|
60 |
+
vit_button.click(flip_vit, inputs=vit_input, outputs=[vit_output1,vit_output2])
|
61 |
+
|
62 |
+
demo.title="猫狗分类器"
|
63 |
+
demo.launch()
|
64 |
+
|