Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,14 +6,21 @@ torch.jit.script = lambda f: f # Avoid script error in lambda
|
|
6 |
from t2v_metrics import VQAScore, list_all_vqascore_models
|
7 |
|
8 |
# Global model variable, but do not initialize or move to CUDA here
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
@spaces.GPU(duration = 20)
|
12 |
def generate(model_name, image, text):
|
13 |
-
|
|
|
|
|
14 |
print("Image:", image) # Debug: Print image path
|
15 |
print("Text:", text) # Debug: Print text input
|
16 |
-
print("
|
17 |
# Wrap the model call in a try-except block to capture and debug CUDA errors
|
18 |
try:
|
19 |
result = model_pipe(images=[image], texts=[text]).cpu()[0][0].item() # Perform the model inference
|
@@ -26,6 +33,7 @@ def generate(model_name, image, text):
|
|
26 |
|
27 |
demo = gr.Interface(
|
28 |
fn=generate, # function to call
|
|
|
29 |
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
|
30 |
outputs="number", # define the type of output
|
31 |
title="VQAScore", # title of the app
|
|
|
6 |
from t2v_metrics import VQAScore, list_all_vqascore_models
|
7 |
|
8 |
# Global model variable, but do not initialize or move to CUDA here
|
9 |
+
cur_model_name = "clip-flant5-xl"
|
10 |
+
model_pipe = update_model(cur_model_name)
|
11 |
+
|
12 |
+
def update_model(model_name):
|
13 |
+
if model_nm
|
14 |
+
return VQAScore(model=model_name, device="cuda")
|
15 |
|
16 |
@spaces.GPU(duration = 20)
|
17 |
def generate(model_name, image, text):
|
18 |
+
if model_name != cur_model_name:
|
19 |
+
model_pipe = update_model(model_name)
|
20 |
+
|
21 |
print("Image:", image) # Debug: Print image path
|
22 |
print("Text:", text) # Debug: Print text input
|
23 |
+
print("Using model:", model_name)
|
24 |
# Wrap the model call in a try-except block to capture and debug CUDA errors
|
25 |
try:
|
26 |
result = model_pipe(images=[image], texts=[text]).cpu()[0][0].item() # Perform the model inference
|
|
|
33 |
|
34 |
demo = gr.Interface(
|
35 |
fn=generate, # function to call
|
36 |
+
# ['clip-flant5-xxl', 'clip-flant5-xl', 'clip-flant5-xxl-no-system', 'clip-flant5-xxl-no-system-no-user', 'llava-v1.5-13b', 'llava-v1.5-7b', 'sharegpt4v-7b', 'sharegpt4v-13b', 'llava-v1.6-13b', 'instructblip-flant5-xxl', 'instructblip-flant5-xl']
|
37 |
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
|
38 |
outputs="number", # define the type of output
|
39 |
title="VQAScore", # title of the app
|