Spaces:
Runtime error
Runtime error
File size: 16,193 Bytes
bcfa144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
# Copyright (c) OpenMMLab. All rights reserved.import math
import json
import math
import torch
import torch.nn as nn
import numpy as np
from collections import defaultdict
from utils import get_root_logger
import torch.nn.functional as F
def rearrange_activations(activations):
n_channels = activations.shape[-1]
activations = activations.reshape(-1, n_channels)
return activations
def ps_inv(x1, x2):
'''Least-squares solver given feature maps from two anchors.
'''
x1 = rearrange_activations(x1)
x2 = rearrange_activations(x2)
if not x1.shape[0] == x2.shape[0]:
raise ValueError('Spatial size of compared neurons must match when ' \
'calculating psuedo inverse matrix.')
# Get transformation matrix shape
shape = list(x1.shape)
shape[-1] += 1
# Calculate pseudo inverse
x1_ones = torch.ones(shape)
x1_ones[:, :-1] = x1
A_ones = torch.matmul(torch.linalg.pinv(x1_ones), x2.to(x1_ones.device)).T
# Get weights and bias
w = A_ones[..., :-1]
b = A_ones[..., -1]
return w, b
def reset_out_indices(front_depth=12, end_depth=24, out_indices=(9, 14, 19, 23)):
block_ids = torch.tensor(list(range(front_depth)))
block_ids = block_ids[None, None, :].float()
end_mapping_ids = torch.nn.functional.interpolate(block_ids, end_depth)
end_mapping_ids = end_mapping_ids.squeeze().long().tolist()
small_out_indices = []
for i, idx in enumerate(end_mapping_ids):
if i in out_indices:
small_out_indices.append(idx)
return small_out_indices
def get_stitch_configs_general_unequal(depths):
depths = sorted(depths)
total_configs = []
# anchor configurations
total_configs.append({'comb_id': [1], })
num_stitches = depths[0]
for i, blk_id in enumerate(range(num_stitches)):
total_configs.append({
'comb_id': (0, 1),
'stitch_cfgs': (i, (i + 1) * (depths[1] // depths[0]))
})
return total_configs, num_stitches
def get_stitch_configs_bidirection(depths):
depths = sorted(depths)
total_configs = []
# anchor configurations
total_configs.append({'comb_id': [0], })
total_configs.append({'comb_id': [1], })
num_stitches = depths[0]
# small --> large
sl_configs = []
for i, blk_id in enumerate(range(num_stitches)):
sl_configs.append({
'comb_id': [0, 1],
'stitch_cfgs': [
[i, (i + 1) * (depths[1] // depths[0])]
],
'stitch_layer_ids': [i]
})
ls_configs = []
lsl_confgs = []
block_ids = torch.tensor(list(range(depths[0])))
block_ids = block_ids[None, None, :].float()
end_mapping_ids = torch.nn.functional.interpolate(block_ids, depths[1])
end_mapping_ids = end_mapping_ids.squeeze().long().tolist()
# large --> small
for i in range(depths[1]):
if depths[1] != depths[0]:
if i % 2 == 1 and i < (depths[1] - 1):
ls_configs.append({
'comb_id': [1, 0],
'stitch_cfgs': [[i, end_mapping_ids[i] + 1]],
'stitch_layer_ids': [i // (depths[1] // depths[0])]
})
else:
if i < (depths[1] - 1):
ls_configs.append({
'comb_id': [1, 0],
'stitch_cfgs': [[i, end_mapping_ids[i] + 1]],
'stitch_layer_ids': [i // (depths[1] // depths[0])]
})
# large --> small --> large
for ls_cfg in ls_configs:
for sl_cfg in sl_configs:
if sl_cfg['stitch_layer_ids'][0] == depths[0] - 1:
continue
if sl_cfg['stitch_cfgs'][0][0] >= ls_cfg['stitch_cfgs'][0][1]:
lsl_confgs.append({
'comb_id': [1, 0, 1],
'stitch_cfgs': [ls_cfg['stitch_cfgs'][0], sl_cfg['stitch_cfgs'][0]],
'stitch_layer_ids': ls_cfg['stitch_layer_ids'] + sl_cfg['stitch_layer_ids']
})
# small --> large --> small
sls_configs = []
for sl_cfg in sl_configs:
for ls_cfg in ls_configs:
if ls_cfg['stitch_cfgs'][0][0] >= sl_cfg['stitch_cfgs'][0][1]:
sls_configs.append({
'comb_id': [0, 1, 0],
'stitch_cfgs': [sl_cfg['stitch_cfgs'][0], ls_cfg['stitch_cfgs'][0]],
'stitch_layer_ids': sl_cfg['stitch_layer_ids'] + ls_cfg['stitch_layer_ids']
})
total_configs += sl_configs + ls_configs + lsl_confgs + sls_configs
anchor_ids = []
sl_ids = []
ls_ids = []
lsl_ids = []
sls_ids = []
for i, cfg in enumerate(total_configs):
comb_id = cfg['comb_id']
if len(comb_id) == 1:
anchor_ids.append(i)
continue
if len(comb_id) == 2:
route = []
front, end = cfg['stitch_cfgs'][0]
route.append([0, front])
route.append([end, depths[comb_id[-1]]])
cfg['route'] = route
if comb_id == [0, 1] and front != 11:
sl_ids.append(i)
elif comb_id == [1, 0]:
ls_ids.append(i)
if len(comb_id) == 3:
route = []
front_1, end_1 = cfg['stitch_cfgs'][0]
front_2, end_2 = cfg['stitch_cfgs'][1]
route.append([0, front_1])
route.append([end_1, front_2])
route.append([end_2, depths[comb_id[-1]]])
cfg['route'] = route
if comb_id == [1, 0, 1]:
lsl_ids.append(i)
elif comb_id == [0, 1, 0]:
sls_ids.append(i)
cfg['stitch_layer_ids'].append(-1)
model_combos = [(0, 1), (1, 0)]
return total_configs, model_combos, [len(sl_configs), len(ls_configs)], anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids
def format_out_features(outs, with_cls_token, hw_shape):
B, _, C = outs[0].shape
for i in range(len(outs)):
if with_cls_token:
# Remove class token and reshape token for decoder head
outs[i] = outs[i][:, 1:].reshape(B, hw_shape[0], hw_shape[1],
C).permute(0, 3, 1, 2).contiguous()
else:
outs[i] = outs[i].reshape(B, hw_shape[0], hw_shape[1],
C).permute(0, 3, 1, 2).contiguous()
return outs
class LoRALayer():
def __init__(
self,
r: int,
lora_alpha: int,
lora_dropout: float,
merge_weights: bool,
):
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
# Mark the weight as unmerged
self.merged = False
self.merge_weights = merge_weights
class Linear(nn.Linear, LoRALayer):
# LoRA implemented in a dense layer
def __init__(
self,
in_features: int,
out_features: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
merge_weights: bool = True,
**kwargs
):
nn.Linear.__init__(self, in_features, out_features, **kwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
merge_weights=merge_weights)
self.fan_in_fan_out = fan_in_fan_out
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.reset_parameters()
if fan_in_fan_out:
self.weight.data = self.weight.data.transpose(0, 1)
def reset_parameters(self):
nn.Linear.reset_parameters(self)
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def train(self, mode: bool = True):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
nn.Linear.train(self, mode)
if mode:
if self.merge_weights and self.merged:
# Make sure that the weights are not merged
if self.r > 0:
self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
self.merged = False
else:
if self.merge_weights and not self.merged:
# Merge the weights and mark it
if self.r > 0:
self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
self.merged = True
def forward(self, x: torch.Tensor):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
if self.r > 0 and not self.merged:
result = F.linear(x, T(self.weight), bias=self.bias)
if self.r > 0:
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
return result
else:
return F.linear(x, T(self.weight), bias=self.bias)
class StitchingLayer(nn.Module):
def __init__(self, in_features=None, out_features=None, r=0):
super().__init__()
self.transform = Linear(in_features, out_features, r=r)
def init_stitch_weights_bias(self, weight, bias):
self.transform.weight.data.copy_(weight)
self.transform.bias.data.copy_(bias)
def forward(self, x):
out = self.transform(x)
return out
class SNNet(nn.Module):
def __init__(self, anchors=None):
super(SNNet, self).__init__()
self.anchors = nn.ModuleList(anchors)
self.depths = [len(anc.blocks) for anc in self.anchors]
total_configs, num_stitches = get_stitch_configs_general_unequal(self.depths)
self.stitch_layers = nn.ModuleList(
[StitchingLayer(self.anchors[0].embed_dim, self.anchors[1].embed_dim) for _ in range(num_stitches)])
self.stitch_configs = {i: cfg for i, cfg in enumerate(total_configs)}
self.all_cfgs = list(self.stitch_configs.keys())
self.num_configs = len(self.all_cfgs)
self.stitch_config_id = 0
self.is_ranking = False
def reset_stitch_id(self, stitch_config_id):
self.stitch_config_id = stitch_config_id
def initialize_stitching_weights(self, x):
logger = get_root_logger()
front, end = 0, 1
with torch.no_grad():
front_features = self.anchors[front].extract_block_features(x)
end_features = self.anchors[end].extract_block_features(x)
for i, blk_id in enumerate(range(self.depths[0])):
front_id, end_id = i, (i + 1) * (self.depths[1] // self.depths[0])
front_blk_feat = front_features[front_id]
end_blk_feat = end_features[end_id - 1]
w, b = ps_inv(front_blk_feat, end_blk_feat)
self.stitch_layers[i].init_stitch_weights_bias(w, b)
logger.info(f'Initialized Stitching Model {front} to Model {end}, Layer {i}')
def init_weights(self):
for anc in self.anchors:
anc.init_weights()
def sampling_stitch_config(self):
self.stitch_config_id = np.random.choice(self.all_cfgs)
def forward(self, x):
stitch_cfg_id = self.stitch_config_id
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id']
if len(comb_id) == 1:
return self.anchors[comb_id[0]](x)
cfg = self.stitch_configs[stitch_cfg_id]['stitch_cfgs']
x = self.anchors[comb_id[0]].forward_until(x, blk_id=cfg[0])
x = self.stitch_layers[cfg[0]](x)
x = self.anchors[comb_id[1]].forward_from(x, blk_id=cfg[1])
return x
class SNNetv2(nn.Module):
def __init__(self, anchors=None, include_sl=True, include_ls=True, include_lsl=True, include_sls=True, lora_r=0):
super(SNNetv2, self).__init__()
self.anchors = nn.ModuleList(anchors)
self.lora_r = lora_r
self.depths = [len(anc.blocks) for anc in self.anchors]
total_configs, model_combos, num_stitches, anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids = get_stitch_configs_bidirection(self.depths)
self.stitch_layers = nn.ModuleList()
self.stitching_map_id = {}
for i, (comb, num_sth) in enumerate(zip(model_combos, num_stitches)):
front, end = comb
temp = nn.ModuleList(
[StitchingLayer(self.anchors[front].embed_dim, self.anchors[end].embed_dim, r=lora_r) for _ in range(num_sth)])
temp.append(nn.Identity())
self.stitch_layers.append(temp)
self.stitch_configs = {i: cfg for i, cfg in enumerate(total_configs)}
self.stitch_init_configs = {i: cfg for i, cfg in enumerate(total_configs) if len(cfg['comb_id']) == 2}
self.all_cfgs = list(self.stitch_configs.keys())
logger = get_root_logger()
logger.info(str(self.all_cfgs))
self.all_cfgs = anchor_ids
if include_sl:
self.all_cfgs += sl_ids
if include_ls:
self.all_cfgs += ls_ids
if include_lsl:
self.all_cfgs += lsl_ids
if include_sls:
self.all_cfgs += sls_ids
self.num_configs = len(self.stitch_configs)
self.stitch_config_id = 0
def reset_stitch_id(self, stitch_config_id):
self.stitch_config_id = stitch_config_id
def set_ranking_mode(self, ranking_mode):
self.is_ranking = ranking_mode
def initialize_stitching_weights(self, x):
logger = get_root_logger()
anchor_features = []
for anchor in self.anchors:
with torch.no_grad():
temp = anchor.extract_block_features(x)
anchor_features.append(temp)
for idx, cfg in self.stitch_init_configs.items():
comb_id = cfg['comb_id']
if len(comb_id) == 2:
front_id, end_id = cfg['stitch_cfgs'][0]
stitch_layer_id = cfg['stitch_layer_ids'][0]
front_blk_feat = anchor_features[comb_id[0]][front_id]
end_blk_feat = anchor_features[comb_id[1]][end_id - 1]
w, b = ps_inv(front_blk_feat, end_blk_feat)
self.stitch_layers[comb_id[0]][stitch_layer_id].init_stitch_weights_bias(w, b)
logger.info(f'Initialized Stitching Layer {cfg}')
def init_weights(self):
for anc in self.anchors:
anc.init_weights()
def sampling_stitch_config(self):
flops_id = np.random.choice(len(self.flops_grouped_cfgs), p=self.flops_sampling_probs)
stitch_config_id = np.random.choice(self.flops_grouped_cfgs[flops_id])
return stitch_config_id
def forward(self, x):
if self.training:
stitch_cfg_id = self.sampling_stitch_config()
else:
stitch_cfg_id = self.stitch_config_id
comb_id = self.stitch_configs[stitch_cfg_id]['comb_id']
# forward by a single anchor
if len(comb_id) == 1:
return self.anchors[comb_id[0]](x)
# forward among anchors
route = self.stitch_configs[stitch_cfg_id]['route']
stitch_layer_ids = self.stitch_configs[stitch_cfg_id]['stitch_layer_ids']
# patch embeding
x = self.anchors[comb_id[0]].forward_patch_embed(x)
for i, (model_id, cfg) in enumerate(zip(comb_id, route)):
x = self.anchors[model_id].selective_forward(x, cfg[0], cfg[1])
x = self.stitch_layers[model_id][stitch_layer_ids[i]](x)
x = self.anchors[comb_id[-1]].forward_norm_head(x)
return x
|