Spaces:
Runtime error
Runtime error
File size: 4,110 Bytes
f93ab8d 7772a1c bee4a9d 8c2c3d2 cd83371 f93ab8d a8a34f1 cd83371 8fe2fcb 91ff99c a8a34f1 8fe2fcb afd3f8f a8a34f1 614ac0b a8a34f1 8c2c3d2 98d9c54 8c2c3d2 b2d6c75 6f71655 b2d6c75 4e9e9f0 f90575b 4e9e9f0 f5652fc 4e9e9f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import sklearn
import gradio as gr
import joblib
import pandas as pd
import datasets
import requests
import json
import dateutil.parser as dp
import pandas as pd
from huggingface_hub import hf_hub_url, cached_download
import time
def get_row():
response_tomtom = requests.get(
'https://api.tomtom.com/traffic/services/4/flowSegmentData/absolute/10/json?key=azGiX8jKKGxCxdsF1OzvbbWGPDuInWez&point=59.39575,17.98343')
json_response_tomtom = json.loads(response_tomtom.text) # get json response
currentSpeed = json_response_tomtom["flowSegmentData"]["currentSpeed"]
freeFlowSpeed = json_response_tomtom["flowSegmentData"]["freeFlowSpeed"]
congestionLevel = currentSpeed/freeFlowSpeed
confidence = json_response_tomtom["flowSegmentData"]["confidence"] # Reliability of the traffic data, by percentage
# Get weather data from SMHI, updated hourly
response_smhi = requests.get(
'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json')
json_response_smhi = json.loads(response_smhi.text)
# weather data manual https://opendata.smhi.se/apidocs/metanalys/parameters.html#parameter-wsymb
referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp()
t = json_response_smhi["timeSeries"][0]["parameters"][0]["values"][0] # Temperature
ws = json_response_smhi["timeSeries"][0]["parameters"][4]["values"][0] # Wind Speed
prec1h = json_response_smhi["timeSeries"][0]["parameters"][6]["values"][0] # Precipation last hour
fesn1h = json_response_smhi["timeSeries"][0]["parameters"][8]["values"][0] # Snow precipation last hour
vis = json_response_smhi["timeSeries"][0]["parameters"][9]["values"][0] # Visibility
# Use current time
referenceTime = time.time()
row ={"referenceTime": referenceTime,
"temperature": t,
"wind speed": ws,
"precipation last hour": prec1h,
"snow precipation last hour": fesn1h,
"visibility": vis,
"confidence of data": confidence}
row = pd.DataFrame([row], columns=row.keys())
print(row)
row.dropna(axis=0, inplace=True)
return row
model = joblib.load(cached_download(
hf_hub_url("tilos/Traffic_Prediction", "traffic_model.pkl")
))
def infer(input_dataframe):
return pd.DataFrame(model.predict(input_dataframe)).clip(0, 1)
title = "Stoclholm Highway E4 Real Time Traffic Prediction"
description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction"
inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"),
headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"],
# datatype=["timestamp", "float", "float", "float", "float", "float"],
label="Input Data", interactive=1)]
outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])]
# with gr.Blocks() as demo:
# with gr.Row():
# with gr.Column():
# gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"),
# headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"],
# # datatype=["timestamp", "float", "float", "float", "float", "float"],
# label="Input Data", interactive=1)
# with gr.Column:
# gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])
# btn = gr.Button(value="Refresh")
# btn.click(interface.launch())
interface = gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=title, description=description, examples=[get_row()], cache_examples=False)
interface.launch()
if __name__ == "__main__":
demo.queue().launch() |