File size: 4,695 Bytes
f93ab8d
 
 
 
 
7772a1c
 
 
bee4a9d
8c2c3d2
cd83371
f93ab8d
a8a34f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd83371
8fe2fcb
425589d
a8a34f1
8fe2fcb
afd3f8f
 
 
 
 
 
a8a34f1
 
 
614ac0b
a8a34f1
 
8c2c3d2
98d9c54
8c2c3d2
b2d6c75
 
6f71655
b2d6c75
 
 
 
936f336
 
 
 
b2d6c75
936f336
b2d6c75
34ac461
 
 
936f336
34ac461
 
 
b5dc851
936f336
b5dc851
34ac461
 
425589d
 
 
 
4e9e9f0
34ac461
1ce8dc4
b5dc851
 
40198f4
4794c33
425589d
ce5d860
425589d
4e9e9f0
e6f6142
b5dc851
34ac461
 
f90575b
4e9e9f0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import sklearn
import gradio as gr
import joblib
import pandas as pd
import datasets
import requests
import json
import dateutil.parser as dp
import pandas as pd
from huggingface_hub import hf_hub_url, cached_download
import time

def get_row():
    response_tomtom = requests.get(
                    'https://api.tomtom.com/traffic/services/4/flowSegmentData/absolute/10/json?key=azGiX8jKKGxCxdsF1OzvbbWGPDuInWez&point=59.39575,17.98343')
    json_response_tomtom = json.loads(response_tomtom.text)  # get json response
    
    currentSpeed = json_response_tomtom["flowSegmentData"]["currentSpeed"]
    freeFlowSpeed = json_response_tomtom["flowSegmentData"]["freeFlowSpeed"]
    congestionLevel = currentSpeed/freeFlowSpeed
    
    confidence = json_response_tomtom["flowSegmentData"]["confidence"] # Reliability of the traffic data, by percentage
    
    
    # Get weather data from SMHI, updated hourly
    
    response_smhi = requests.get(
                'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json')
    json_response_smhi = json.loads(response_smhi.text) 
    
    # weather data manual https://opendata.smhi.se/apidocs/metanalys/parameters.html#parameter-wsymb
    referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp()
    
    t             = json_response_smhi["timeSeries"][0]["parameters"][0]["values"][0] # Temperature
    ws            = json_response_smhi["timeSeries"][0]["parameters"][4]["values"][0] # Wind Speed
    prec1h        = json_response_smhi["timeSeries"][0]["parameters"][6]["values"][0] # Precipation last hour
    fesn1h        = json_response_smhi["timeSeries"][0]["parameters"][8]["values"][0] # Snow precipation last hour
    vis           = json_response_smhi["timeSeries"][0]["parameters"][9]["values"][0] # Visibility

    # Use current time
    referenceTime = int(time.time())
    
    row           ={"referenceTime": referenceTime, 
                        "temperature": t, 
                        "wind speed": ws, 
                        "precipation last hour": prec1h, 
                        "snow precipation last hour": fesn1h, 
                        "visibility": vis, 
                        "confidence of data": confidence}
    
    row = pd.DataFrame([row], columns=row.keys())
    print(row)
    row.dropna(axis=0, inplace=True)
    return row

model = joblib.load(cached_download(
    hf_hub_url("tilos/Traffic_Prediction", "traffic_model.pkl")
))

def infer(input_dataframe):
  return pd.DataFrame(model.predict(input_dataframe)).clip(0, 1)

title = "Stoclholm Highway E4 Real Time Traffic Prediction"
description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction"

# inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), 
#                        headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], 
#                        # datatype=["timestamp", "float", "float", "float", "float", "float"],
#                        label="Input Data", interactive=1)]

# outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])]

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            inputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), 
                       headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], 
                       # datatype=["timestamp", "float", "float", "float", "float", "float"],
                       label="Input Data", interactive=1)
        with gr.Column():
            outputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])
    
    with gr.Row():
        btn_sub = gr.Button(value="Submit")
    with gr.Row():
        btn_ref = gr.Button(value="Get real-time data")

    
    
    btn_sub.click(infer, inputs = inputs, outputs = outputs)
    btn_ref.click(get_row, inputs = None, outputs = inputs)
    
    #examples = gr.Examples(fn = infer, examples=[get_row()],inputs=inputs,outputs=outputs  ,cache_examples=True)
    examples = gr.Examples(fn = infer, examples=[get_row()] ,inputs=inputs, outputs=outputs, cache_examples=False)

    # demo.load(get_row, inputs = None, outputs = [inputs], every=10)
    demo.load(get_row, inputs = None, outputs = [inputs])

        

    
# interface = gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=title, description=description, examples=[get_row()], cache_examples=False)
# interface.launch()

if __name__ == "__main__":
    demo.queue().launch()